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PAPER
Wigner’s Semicircle Law of Weighted Random Networks

Yusuke SAKUMOTO†a), Member and Masaki AIDA††b), Fellow

SUMMARY Spectral graph theory provides an algebraic approach to
investigate the characteristics of weighted networks using the eigenvalues
and eigenvectors of a matrix (e.g., normalized Laplacian matrix) that rep-
resents the structure of the network. However, it is difficult to accurately
represent the structures of large-scale and complex networks (e.g., social
network) as a matrix. This difficulty can be avoided if there is a universality,
such that the eigenvalues are independent of the detailed structure in large-
scale and complex network. In this paper, we clarify Wigner’s Semicircle
Law for weighted networks as such a universality. The law indicates that
the eigenvalues of the normalized Laplacian matrix of weighted networks
can be calculated from a few network statistics (the average degree, average
link weight, and square average link weight) when the weighted networks
satisfy a sufficient condition of the node degrees and the link weights.
key words: random matrix theory, Wigner’s semicircle law, spectral graph
theory, Laplacian matrix, network analysis

1. Introduction

Many networks such as railway networks, social networks,
the Internet, and airport networks are modeled as weighted
networks that are composed of nodes andweighted links [1]–
[3]. The weighting of links is important in network model-
ing, but it is a tedious task in the case of large-scale and com-
plex networks, such as social networks. In a social network,
nodes and links correspond to persons and their relation-
ships, respectively. To assign the correct weight to each link
in the social network, the strength of the relationships among
people should be accurately estimated from a huge amount
of personal data (e.g., communication histories in mobile
phones and social media). Owing to the risk of breaching
privacy and the associated computational complexity, it is
unrealistic to gather such personal data, and calculate the
strength of the relationships accurately.

Spectral graph theory provides an algebraic approach
to investigate the characteristics of weighted networks us-
ing the eigenvalues and the eigenvectors of a matrix (e.g.,
normalized Laplacian matrix) that represents the structure
of the network [4], [5]. In particular, the eigenvalues are
important to understand the characteristics related to the en-
tire network on the basis of spectral graph theory. In [6], it
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has been demonstrated that the eigenvalue distribution of the
normalized Laplacian matrix affects the information dissem-
ination speed throughout the social network. In general, the
eigenvalues of the matrix are calculated from all the matrix
elements. The elements of the matrix representing the struc-
ture of a weighted network are determined by the weights on
the links. Hence, the weighting of the links is required to ap-
ply spectral graph theory for weighted networks. This would
deter the application of spectral graph theory for large-scale
and complex networks. However, the weighting of the links
is avoidable if there is a universality that the eigenvalues
are independent of the detailed structure (e.g., the weight of
each link) of large-scale and complex networks. Therefore,
finding of such a universality of the eigenvalues expands the
applicable region of spectral graph theory.

Random matrix theory discusses a universality of the
eigenvalues if the elements of the matrix are given by ran-
dom variables [7]–[9]. In [9], Chung et al. analyzed the
random matrix corresponding to the normalized Laplacian
matrices of unweighted networks, and have confirmed the
universality (Wigner’s semicircle law) that the eigenvalues
of the normalized Laplacian matrix follow the semicircle
distribution. In [6], it was investigated whether Wigner’s
semicircle law [9] of unweighted networks is satisfied for
weighted networks, through numerical experiments. How-
ever, the condition of weighted networks satisfyingWigner’s
semicircle law was not explicitly furnished, and the width of
the eigenvalue distribution (spectral radius) was not found.
Hence, the universality for weighted networks is not fully
understood. Given the available literature, no study has
elucidated the universality of the eigenvalues for weighted
networks.

In this paper, the universality (Wigner’s semicircle law)
of the eigenvalues is presented for weighted networks on the
basis of the discussion of [9]. Our findings include (a) a suf-
ficient condition for weighted networks to satisfy Wigner’s
semicircle law and (b) an expression of the spectral radius
of the eigenvalue distribution. According to the derived
expression, the spectral radius determines the eigenvalue
distribution of the normalized Laplacian matrix of weighted
networks, and is calculated from a few network statistics (the
average degree, average link weight, and square average link
weight). Hence, the eigenvalues can be obtained from a few
network statistics when the weighted networks satisfy the
sufficient condition of the node degrees and the link weights.
Using some numerical examples, the validity of the sufficient
condition is confirmed.

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers
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This paper is organized as follows. In Sect. 2, spectral
graph theory and the random matrix theory for weighted
networks is described. In Sect. 3, Wigner’s semicircle law
for weighted networks is proved on the basis of the random
matrix theory. Section 4 shows some numerical examples.
Finally, in Sect. 6, we conclude this paper and discuss the
future work.

2. Preliminary

2.1 Spectral Graph Theory

In spectral graph theory, the structure of a network is rep-
resented by a matrix, and the characteristics of the network
are investigated using its eigenvalues and eigenvectors. In
this section, we describe spectral graph theory for weighted
networks.

We denote a weighted network by G = (V, E, w) where
V and E are the sets of nodes and links, respectively. Let
n be the number of nodes in G. The link between nodes i
and j is denoted by (i, j). Link (i, j) has the weight w (i, j)
where w (i, j) = w ( j, i) and w (i, j) > 0. Let ∂i be the set of
adjacent nodes of node i. The weighted degree di of nodes
i is defined by

di :=
∑
j∈∂i

w (i, j). (1)

To represent the structure of links and nodes in G, there
are adjacency and degree matrices, A and D, respectively.
The (i, j)-th element A(i, j) of adjacency matrix A is defined
by

A(i, j) :=



w (i, j) if (i, j) ∈ E
0 otherwise

. (2)

Degree matrix D is defined by

D := diag(di)1≤i≤n. (3)

To represent both the structure of nodes and links inG, a nor-
malized Laplacian matrix N is often used. The normalized
Laplacian matrix N is defined by

N := I − D−1/2AD−1/2, (4)

where I is the identity matrix.
Since a normalized Laplacian matrix N is symmet-

ric (N = NT), its eigenvalues λl (l = 1, ..., n) are real num-
bers. Let ql be the eigenvector of eigenvalue λl where
ql

Tql = 1. We assign a number to λl in ascending order, and
hence λl refers to the l-th minimum eigenvalue of N . The
range of the eigenvalues is given by

0 = λ1 < λ2 ≤ ... ≤ λn < 2. (5)

If λ2 > 0, the weighted network G is connected (i.e., there is
at least one path between every pair of nodes). The weighted
network G is not a bipartite graph, if λ2 < 2. We define the

spectral radius r by r := max2≤l≤n |1 − λl |. Spectral radius
r satisfies 0 < r < 1 because 0 < λl < 2 for 2 ≤ l ≤ n.
Eigenvector q1 of minimum eigenvalue λ1 is given by

q1 =
1

√
Vol(G)

(
√

d1,
√

d2, ...,
√

dn)
T
, (6)

where Vol(G) is defined by

Vol(G) :=
∑
i∈G

di . (7)

Since the eigenvectors ql is an orthonormal basis, matrix
Q = (ql)1≤k≤n is the orthogonal matrix (Q−1 = QT).

UsingQ andΛ = diag(λl)1≤k≤n, the normalizedLapla-
cian matrix N is given by

N = QΛQT =

n∑
l=1

λl ql q
T
l . (8)

From the above equation, N is determined by eigenvalues
(λl)1≤l≤n and eigenvectors (ql)1≤l≤n. Hence, the weighted
network G can be analyzed not only with N but also with
its eigenvalues and eigenvectors. Spectral graph theory pro-
vides an algebraic method for analyzing G with eigenvalues
λl and eigenvectors ql of N . In particular, the eigenvalues
λl are important to understand the statistical characteristics
related to the entirety of the weighted network G. In order
to calculate eigenvalues λl , in general, all elements N (i, j)
must be given accurately. However, if there is a useful uni-
versality of eigenvalues λl , we can investigate the statistical
characteristics of the weighted network G without all ele-
ments N (i, j).

2.2 Random Matrix Theory

Random matrix theory focuses on random matrices whose
the elements are given by random variables, and clarifies that
a universality of the eigenvalues appears if the matrix size
approaches infinity. When the links and their weights in the
weighted network G are randomly given with a stochastic
rule, elements N (i, j) of the normalized Laplacian matrix N
become random variables, and N can be treated as a random
matrix. Note that the universality of eigenvalues λl of N
corresponds to a characteristic of the statistical ensemble
of the random networks generated with the same stochastic
rule. Hence, clarifying such a universality contributes to the
growth of the statistical mechanics on networks.

In [9], the link between nodes i and j in an unweighted
network is randomly generated using the stochastic rule with
random variable Li j . If Li j = 0, there is no link between
nodes i and j. On the other hand, if Li j = 1, a link exists
between nodes i and j. We denote probability P

[
Li j = 1

]

by pi j , which is given by

pi j = ρσi σ j, (9)

where σi > 0 and ρ = 1/
∑

i∈V σi . Using Eq. (9), the ex-
pectation of the node i’s degree is given by σi . Let σavg,
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σmin, and σmax be the average degree, the minimum degree,
and the maximum degree. These are defined by σavg :=
1/n

∑
i∈V σi , σmin := infi∈V σi , and σmax := supi∈V σi ,

respectively. We can write ρ as ρ = 1/(nσavg). Similar
to [9], it is assumed that σ2

max < 1/ρ, so that pi j ≤ 1. Using
the above stochastic rule, special networks (e.g., networks
with no links) are rarely generated. The probability of gen-
erating such special networks is very small, and therefore,
this stochastic rule poses no problem in the discussion of a
universality appearing when n → ∞.

In theweighted networkG, theweight of the link (i, j) is
randomly set using the stochastic rule with random variable
W . In the stochastic rule, the random variable W follows
the conditional probability density function fW |Li j (w | l),
which is defined by

fW |Li j (w | l) dw := P
[
w ≤ W ≤ w + dw | Li j = l

]
.

(10)

If Li j = 0 (i.e., link (i, j) does not exist), W is always 0, and
hence fW |Li j (w | 0) = δ(w) where δ(x) is the Dirac delta
function. On the contrary, if Li j = 1, thenW > 0. Since link
weights in actual networks cannot be infinity, it is assumed
that W is bounded. Using a finite value wmax, W ≤ wmax.
For convenience, we write

pW (w) := fW |Li j (w | 1). (11)

Let EpW
[
Wm]

be the m-th moment of W with the condition
Li j = 1. EpW

[
Wm]

is defined by

EpW
[
Wm]

:=
∫ wmax

0
wm pW (w) dw. (12)

Even if the weights of all links in G are divided by wmax, the
normalized Laplacian matrix N remains invariant. Hence,
without loss of generality, we assume wmax = 1. With
this assumption, EpW

[
Wm]

has the following properties:
(a) EpW

[
W l] ≤ E fW [

Wm]
for l > m, and (b) EpW

[
Wm]

≤ 1
since EpW

[
W0] = 1.

Following the above stochastic rules, not only elements
N (i, j) but also the eigenvalues λl (l = 2, ..., n) of the nor-
malized Laplacian matrix N for the weighted network G
become random variables depending on the set of random
variables Γ = (L,W ) where L = (Li j )(i, j)∈V 2 . Let Λ be the
random variable for eigenvalue λ of N . We denote the con-
ditional eigenvalue density of eigenvalues λl (l = 2, ..., n) of
N by f (n)

Λ |Γ
(λ | γ), which is defined by

f (n)
Λ |Γ

(λ | γ) :=
1

n − 1

n∑
l=2

δ (λ − λl) , (13)

where λl is the function of γ. Since eigenvalues λl vary
stochastically, conditional eigenvalue density f (n)

Λ |Γ
(λ | γ)

is also a random variable. Note that f (n)
Λ |Γ

(λ | γ) can be
treated as a conditional probability density function because∫ λn

λ2
f (n)
Λ |Γ

(λ | γ) dλ = 1. Using probability P
[
Γ = γ

]
,

eigenvalue density f (n)
Λ

(λ) of N is given by

f (n)
Λ

(λ) = EP[Γ]
[

f (n)
Λ |Γ

(λ | γ)
]

=
1

n − 1

∑
γ

P
[
Γ = γ

] n∑
l=2

δ (λ − λl) . (14)

Since
∫ λn

λ2
f (n)
Λ

(λ) dλ = 1, f (n)
Λ

(λ) can be also treated as
a probability density function. Then, we denote the m-th
moment for 1 − Λ using f (n)

Λ
(λ) by E

f (n)
Λ

[
(1 − Λ)m

]
, which

is defined by

E
f (n)
Λ

[
(1 − Λ)m

]
:=

∫ λn

λ2

(1 − λ)m f (n)
Λ

(λ) dλ

=
1

n − 1
EP[Γ]

[ n∑
l=2

(1 − λl)m
]
. (15)

Using the approach of the random matrix theory, the
previous work [9] has established the universality (Wigner’s
semicircle law) that the eigenvalue density f (n)

Λ
(λ) for un-

weighted networks follows a certain distribution (i.e., semi-
circle distribution). If such a universality exists even for
the weighted network G, eigenvalue density f (n)

Λ
(λ) can be

obtained without giving link weights w (i, j) correctly. This
allows the analysis of G based on spectral graph theory even
if G is a large-scale and complex network, such as social
network.

3. Wigner’s Semicircle Law of Weighted Network G

In this section, we probe Wigner’s semicircle law for a
weighted network G on the basis of the discussion in [9].
Wigner’s semicircle law for G is as follows:

Theorem. If the weighted network G satisfies the degree
condition

σ2
min �

σavg

EpW
[
W2] , (16)

f (n)
Λ

(λ) of the normalized Laplacian matrix N converges to
a semicircle distribution f̃Λ(λ) as n → ∞. A semicircle
distribution f̃Λ(λ) is given by

f̃Λ(λ) =



2
π r̃2

√
r̃2 − (1 − λ)2 1 − r̃ < λ < 1 + r̃

0 otherwise
,

(17)

where r̃ is the limit value of spectral radius r as n → ∞, and
is given by

r̃ =
2

√
σavg

√
EpW

[
W2]

EpW
[
W

] . (18)

Remark. When the links in G are not weighted, W is al-
ways 1 if Li j = 1, and hence EpW

[
W

]
= EpW

[
W2] = 1. By
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substituting them into Eqs. (16) and (18), we obtainWigner’s
semicircle law for unweighted networks shown in [9]. There-
fore, it can be generalized to a weighted network G.

The degree condition (16)means thatσmin is sufficiently
large in a weighted network G, and is necessary to satisfy
Eqs. (45) and (58) in the proof. How easily Eq. (16) holds,
depends on the value of σmin. If σmin is large, it is easy to
satisfy Eq. (16).

According to the degree distribution of the Facebook
friend network reported in [10], the minimum and the aver-
age degrees of Facebook users are 1 and 190, respectively.
Since EpW

[
W2] is smaller than 1, Eq. (16) is not satisfied for

the friend network of Facebook users. Note that the survey in
[10] targeted all Facebook users who logged in May 2011,
and includes not only frequent Facebook users but also infre-
quent ones. According to [11], frequent users of Facebook
tend to have many friends. Hence, the induced subgraph
of the frequent Facebook users would have a minimum de-
gree large enough to satisfy Eq. (16). Since the frequent
users mainly disseminate information in social networks, the
analysis of such an induced subgraph is important to under-
stand the characteristics of the information dissemination.
Analysis of the induced subgraph of frequent users in actual
SNSs will be done as part of a future study. In this analysis,
we obtain the degrees of SNS users with the node sampling
method [12], and use the obtained degree as σi .

Equation (17) implies that the width of the eigen-
value distribution of the normalized Laplacian matrix N
becomes large as r̃ increases. From Eq. (18), r̃ is determined
by the network statistics (σavg, EpW

[
W2] , and EpW [

W
]2).

In particular, if relative variance EpW
[
W2]/EpW [

W
]2 in-

creases, r̃ increases. Hence, there is the relationship be-
tween the width of the eigenvalue distribution and rela-
tive variance EpW

[
W2]/EpW [

W
]2. According to the anal-

ysis in [7], r̃ of the semicircle distribution increases, as
the variance of the non-diagonal elements of the matrix
considering Wigner’s semicircle law increases. As rela-
tive variance EpW

[
W2]/EpW [

W
]2 increases, the variance

of the non-diagonal elements of the normalized Laplacian
matrix N also increases. Thus, the relationship between
the width of the eigenvalue distribution and relative vari-
ance EpW

[
W2]/EpW [

W
]2 expressed in Eqs. (17) and (18) is

derived.

Proof. If eigenvalue density f (n)
Λ

(λ) is given by a semicircle
distribution f̃Λ(λ), even moment E f̃Λ

[
(1 − Λ)2m]

and odd
moment E f̃Λ

[
(1 − Λ)2m+1] for 1 − Λ are given by

E f̃Λ
[
(1 − Λ)2m]

=

∫ 1+r̃

1−r̃
(1 − λ)2m f̃Λ(λ) dλ

=

( r̃
2

)2m (2 m)!
m! (m + 1)!

, (19)

E f̃Λ
[
(1 − Λ)2m+1] = ∫ 1+r̃

1−r̃
(1 − λ)2m+1 f̃Λ(λ) dλ

= 0. (20)

Since E f̃Λ
[
Λ
]
= 1, the above moments for 1 − Λ correspond

to the central moments of Λ. The following are equivalent:

1. As n → ∞, eigenvalue density f (n)
Λ

(λ) converges to
semicircle distribution f̃Λ(λ).

2. As n → ∞, even moment E f̃Λ
[
(1 − Λ)2m]

and odd
moment E f̃Λ

[
(1 − Λ)2m+1] converge to Eqs. (19) and

(20), respectively.

To prove Wigner’s semicircle law for a weighted network G,
we show that 2. is fulfilled if the degree condition (16) is
satisfied.

For convenience, we use matrix M after removing the
effect of minimum eigenvalue λ1 from normalized Laplacian
matrix N . Matrix M is defined by

M :=
n∑
l=2

(1 − λl) ql qT
l = I − N − q1 q

T
1

= D−1/2AD−1/2 −
1

Vol(G)
D1/2KD1/2, (21)

where K is the matrix with all elements given by 1, and
corresponds to the adjacency matrix for the complete graph
including self-loops at all nodes. MatrixM has n−1 nonzero
eigenvalues, and the l-th largest eigenvalue is given by 1−λl .
Hence

Tr
[
Mm]

=

n∑
l=2

(1 − λl)m. (22)

By substituting the above equation into Eq. (15), we obtain

E
f (n)
Λ

[
(1 − Λ)m

]
=

1
n − 1

EP[Γ]
[
Tr

[
Mm] ]

. (23)

Since EpW
[
W

]
is finite, the weighted degree di of the

node i converges to its expected value EP[Γ]
[
di

]
as n → ∞.

EP[Γ]
[
di

]
is given by

EP[Γ]
[
di

]
=

∑
j∈V

(
pi jE fW |Li j

[
W | Li j = 1

]
+(1 − pi j )E fW |Li j

[
W | Li j = 0

] )
=

∑
j∈V

pi jEpW
[
W

]
= EpW

[
W

] ∑
j∈V

ρσi σ j

= EpW
[
W

]
σi . (24)

Note that pi j = ρσiσ j was used to derive the above equation.
By substituting EP[Γ]

[
di

]
into Eq. (21), we obtain matrix C,

which is given by

C =
1

EpW
[
W

] σ−1/2Aσ−1/2 − ρσ1/2Kσ1/2, (25)

where σ = diag(σi)1≤i≤n. As n → ∞, matrix M converges
tomatrixC, since di = EP[Γ]

[
di

]
. SinceWigner’s semicircle
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law discusses the limit theorem where n → ∞, the proof is
valid if C is used instead of M .

Element C(i, j) of matrix C is a random variable, and
is given by

C(i, j) =



wi j

EpW
[
W

]√
σiσ j

− ρ
√
σiσ j if Li j = 1

−ρ
√
σiσ j otherwise

.

(26)

Let EP[Γ]
[
Cm(i, j)

]
be the m-th moment of C(i, j). Specifi-

cally, the 1st moment EP[Γ]
[
C(i, j)

]
is given by

EP[Γ]
[
C(i, j)

]
= pi jE fW |Li j

[
W

EpW
[
W

]√
σiσ j

− ρ
√
σiσ j

�����
Li j = 1

]

+ (1 − pi j )E fW |Li j

[
ρ
√
σiσ j

�����
Li j = 0

]

= 0. (27)

For m ≥ 2, the m-th moment EP[Γ]
[
C(i, j)m

]
is bounded by

EP[Γ]
[
Cm(i, j)

]
= pi jE fW |Li j

[(
W

EpW
[
W

]√
σiσ j

− ρ
√
σiσ j

)m�����
Li j = 1

]

+ (1 − pi j )E fW |Li j

[(
ρ
√
σiσ j

)m�����
Li j = 0

]

= pi j
m−2∑
l=0

(
m
l

)
(−pi j )lEpW

[
Wm−l]

EpW
[
W

]m−l (σiσ j )m/2

= ρ

m−2∑
l=0

(
m
l

)
(−ρ)lEpW

[
Wm−l]

EpW
[
W

]m−l (σiσ j )m/2−l−1
(28)

=
ρEpW

[
Wm]

EpW
[
W

]m(σiσ j )m/2−1 (1 + o(1))

≤
ρEpW

[
Wm]

EpW
[
W

]mσm−2
min

(1 + o(1)) . (29)

To derive the above equation, the term with l = 0 in the sum
since ρ = 1/(nσavg) = 1/σ(n) = o(1) was retained. Note
that σ( f (n)) is a function that increases faster than or equal
to f (n) as n → ∞. Then, we use f (n) = o(1) as

lim
n→∞

f (n) = 0. (30)

The m-th moment Tr[Cm] is given by

Tr
[
Cm]

=
∑

vm ∈Φn,m

C(v1, v2)C(v2, v3) ...C(vm, v1)

=
∑

vm ∈Φn,m

h(vm )∏
l=1

C(el)ml , (31)

where vm = (v1, v2, v3, ..., vm) represents a cycle of length m
in the complete graph with n nodes, and Φn,m is the set of
the cycles with length m. In cycle vm, h(vm) is the number

Fig. 1 The complete graph with 4 nodes.

of disjoint links, el is the l-th link, and ml is the occurrence
number of link el . In particular, ml satisfies

h(vm )∑
l=1

ml = m. (32)

where (i, j) and ( j, i) are treated as the same link in a cycle
when counting ml since C is a symmetric matrix.

Figure 1 shows the example of the complete graph with
4 nodes. For example, Φ4,6 includes v6 = (1, 2, 3, 1, 2, 3). In
cycle v6, h(v6) = 3, e2 = (2, 3) and m2 = 2.

From Eq. (23) and M ≈ C, the m-th moment E
f (n)
Λ

[
(1−

Λ)m
]
is approximated by

E
f (n)
Λ

[
(1 − Λ)m

]
≈

1
n − 1

EP[Γ]
[
Tr

[
Cm] ]

. (33)

As n → ∞, the error of the approximation approaches to 0.
Hence, we investigate EP[Γ]

[
Tr[Cm]

]
in order to prove that

E
f (n)
Λ

[
(1 − Λ)m

]
converges to Eqs. (19) and (20) as n → ∞.

To show the convergence of even moments E
f (n)
Λ

[
(1 −

Λ)2m]
, we investigate EP[Γ]

[
Tr

[
C2m

] ]
. Using the indepen-

dence ofC(i, j), an evenmomentEP[Γ]
[
Tr

[
C2m

] ]
is bounded

by

EP[Γ]
[
Tr

[
C2m

] ]
=

∑
vm ∈Φn,2m

h(vm )∏
l=1
EP[Γ]

[
C(el)ml

]
≤

m∑
l=0
|Zl,m |

EpW
[
W2] l EpW [

W2(m−l)] ρl
EpW

[
W

]2mσ2m−2l
min

(1 + o(1))

≤

m∑
l=0
|Zl,m |

EpW
[
W2] l ρl

EpW
[
W

]2mσ2m−2l
min

(1 + o(1)) , (34)

where Zl,m is a set of cycles (v1, v2, ..., v2m) with length 2m
and disjoint l + 1 nodes. Note that Zl,m ⊂ Φn,2m. For exam-
ple, (1, 2, 3, 1, 2, 3) is included in Z2,3. The cycles included
in Zl,m are composed of at least l disjoint links. To derive
the second right-hand side of the above equation, we first
divide all cycles in Φn,2m into the sets Zl,m of the cycles that
the number of disjoint links is l. Each set has |Zl,m | cycles.
Using Eq. (29), for vm ∈ Zl,m, we obtain

h(vm )∏
l=1
EP[Γ]

[
C(el)ml

]
≤
EpW

[
W2] l EpW [

W2(m−l)] ρl
EpW

[
W

]2mσ2m−2l
min

,

(35)
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since that EpW
[
W2] is the largest in the m-th moments

EpW
[
Wm]

for m ≥ 2. In the first right-hand side of
Eq. (34), the reason why the cycles longer than m are
not considered, is as follows. First, EP[Γ]

[
C(i, j)

]
= 0.

Hence,
∏h(vm )

l=1 EP[Γ]
[
C(el)ml

]
is 0 except if ml ≥ 2 for

1 ≤ l ≤ h(vm). Since ml ≥ 2 for 1 ≤ l ≤ h(vm), the
number of links l in the cycle is at most m.

To extract the main term ofEP[Γ]
[
Tr

[
C2m

] ]
, we rewrote

Eq. (34) with

EP[Γ]
[
Tr

[
C2m

] ]
≤

m∑
l=1

ηl,m = ηm,m

m∑
l=1

ηl,m

ηm,m
, (36)

where ηl,m is

ηl,m = |Zl,m |
EpW

[
W2] l ρl

EpW
[
W

]2mσ2m−2l
min

. (37)

In the above equation, |Zl,m | is given by

|Zl,m | = |Za (l,m) | |Zb (l,m) | |Zc (l,m) |

=
n!

(n − l − 1)!

(
2m
2l

)
(l + 1)4 (m−l) 1

l + 1

(
2l
l

)
,

(38)

where Za (l,m) is the number of permutations (ik )1≤k≤l+1
by selecting l + 1 nodes from n nodes, and is given by

|Za (l,m) | =
n!

(n − l − 1)!
. (39)

Then, |Zb (l,m) | is the number of combinations such that
each ik appears more than once in the cycle with length 2m
and is given by

|Zb (l,m) |=
(
2m
2l

)(
(l + 1)2

)2(m−l)
=

(
2m
2l

)
(l + 1)4(m−l) .

(40)

In the above equation, since there is no restriction except
that each ik must appear at least twice, it is multiplied by
(l + 1)4(m−l) . Moreover, Zc (l,m) is the number of the sec-
ond appearance positions for ik and is given by

|Zc (l,m) | =
1

l + 1

(
2l
l

)
. (41)

Note that the right side of the above equation is the Catalan
number.

By substituting Eq. (38) into Eq. (37), ηl,m is given by

ηl,m = |Zl,m |
EpW

[
W2] l ρl

EpW
[
W

]2mσ2m−2l
min

=
n!

(n − l − 1)!

(
2m
2l

)
(l + 1)4(m−l)

1
l + 1

(
2l
l

)
EpW

[
W2] l ρl

EpW
[
W

]2mσ2m−2l
min

. (42)

Then, ηl,m
ηm,m

in (36) is bounded by

ηl,m

ηm,m
=

(n − m − 1)!
(n − l − 1!)

(
2m
2l

)
(l + 1)4(m−l)

m + 1
l + 1

(2l
l

)(2m
m

) EpW [
W2] lEpW [

W2m−2l] ρl
σ2m−2l

min EpW
[
W2]mρm

≤

(
2m
2l

)
nl−m(l + 1)4(m−l)4l−m

σ2(m−l)
min EpW

[
W2]m−l ρm−l

≤
nl−m 2 m2(m−l) m4(m−l)4l−m

σ2(m−l)
min EpW

[
W2]m−l ρm−l

≤ 2


σavg m6

4σ2
minEpW

[
W2] 

m−l

. (43)

To obtain the upper bound of ηl,m
ηm,m

, the Stirling’s approxi-
mation was used, and is given by

√
2 πnn+1/2 e−n ≤ n! ≤ nn+1/2 e−n+1. (44)

According to the following discussion, if the degree condi-
tion is satisfied, the right-hand side of Eq. (43) for m > l
becomes o(1). First, for m > l, we derive



σavg m6

4σ2
minEpW

[
W2] 

m−l

= o(1). (45)

To prove the above equation, we should show

σavg m6

4σ2
minEpW

[
W2] = o(1). (46)

Similarly for [9], using m = log n, we obtain the condition

σ2
min = σ((log n)6)

σavg

EpW
[
W2] , (47)

to satisfy Eqs. (45) and (46). The condition (47) is the same
as the degree condition (16).

Therefore, if the degree condition (16) is satisfied, for
m > l, we obtain

ηl,m

ηm,m
= o(1). (48)

By substituting the above equation into Eq. (36), the upper
bound of EP[Γ]

[
Tr

[
C2m

] ]
is given by

EP[Γ]
[
Tr

[
C2m

] ]
≤ (1 + o(1)) ηm,m. (49)

On the other hand, the lower bound of EP[Γ]
[
Tr

[
C2m

] ]
is given by

EP[Γ]
[
Tr

[
C2m

] ]
=

∑
vm ∈Φn,m

h(vm )∏
h=1
EP[Γ]

[
C(el)ml

]
≥ |Zm,m |EP[Γ]

[
C(i, j)2]m
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≥ |Zm,m |ρ
mEpW

[
W2]m

EpW
[
W

]2m (1 − o(1))

= (1 − o(1)) ηm,m. (50)

Note that the second right-hand side of the above equation
was obtained by only using the cycles with disjoint m links.
To derive the third right-hand side, we used

EP[Γ]
[
C(i, j)2] ≥ ρ

EpW
[
W2]

EpW
[
W

]2 (1 − o(1)). (51)

This can be derived from Eq. (28).
According to Eqs. (36) and (50), EP[Γ]

[
Tr

[
C2m

] ]
is

bounded by

ηm,m(1 − o(1)) ≤ EP[Γ]
[
Tr

[
C2m

] ]
≤ ηm,m(1 + o(1)).

(52)

As n → ∞, the even moment E
f (n)
Λ

[
(1 − λ)2m]

converges to

lim
n→∞
E
f (n)
Λ

[
(1 − λ)2m]

= lim
n→∞

1
n − 1

EP[Γ]
[
Tr

[
C2m

] ]
= lim

n→∞

1 ± o(1)
n − 1

ηm,m

= lim
n→∞

n!
(n − 1)(n − m − 1)!

1
m + 1

(
2m
m

)
EpW

[
W2]mρm

EpW
[
W

]2m

= lim
n→∞

g(n)
EpW

[
W2]m

σm
avgEpW

[
W

]2m
1

m + 1

(
2m
m

)

=
EpW

[
W2]m

σm
avgEpW

[
W

]2m
1

m + 1

(
2m
m

)
=

( r̃
2

)2m (2 m)!
m! (m + 1)!

, (53)

where g(n) is defined by

g(n) :=
n!

(n−1)(n−m−1)! nm
. (54)

Note that limn→∞ g(n) = 1.
Therefore, if a weighted network G satisfies the degree

condition (16), the even moment EP[Γ]
[
Tr

[
C2m

] ]
converges

to E f̃Λ
[
(1 − λ)2m]

as n → ∞.
Next, we investigate the oddmomentEP[Γ]

[
Tr

[
C2m+1

] ]
.

Similar to the even moment EP[Γ]
[
Tr

[
C2m

] ]
,

EP[Γ]
[
Tr

[
C2m+1

] ]
is bounded by

EP[Γ]
[
Tr

[
C2m+1

] ]
=

∑
vm ∈Φn,2m+1

h(vm )∏
l=1
EP[Γ]

[
C(el)ml

]
≤

m∑
l=0
|Zl,m |

EpW
[
W2] l−1ρl

EpW
[
W

]2m+1σ2m−2l+1
min

(1 + o(1))

≤

m∑
l=0

η ′
l,m

σmin
= η ′m,m

m∑
l=0

*
,

η ′
l,m

σmin η
′
m,m

+
-
, (55)

where
∑l

h=1 mh = 2m + 1, and η ′
l,m

is given by

η ′l,m = |Zl,m |
EpW

[
W2] l−1ρl

EpW
[
W

]2m+1σ2m−2l
min

(1 + o(1)) . (56)

Using a method analogous to the one for the even moment,
η ′
l,m
/(σmin η

′
m,m) is bounded by

η ′
l,m

σmin η
′
m,m
≤

4
√
EpW

[
W2]√

σavgm3



σavg m6

4σ2
minEpW

[
W2] 

m−l+1/2

≤ 4
√
EpW

[
W2] 

σavg m6

4σ2
minEpW

[
W2] 

m−l+1/2

.

(57)

If the degree condition (16) is satisfied, for m ≥ l, we obtain



σavg m6

4σ2
min EpW

[
W2] 

m−l+1/2

= o(1). (58)

Hence, the upper bound of 1/(n − 1)EP[Γ]
[
Tr

[
C2m+1

] ]
is

given by

1
n − 1

EP[Γ]
[
Tr

[
C2m+1

] ]
≤

o(1)
n − 1

η ′m,m. (59)

As n → ∞, the right-hand side of the above equation con-
verges to

lim
n→∞

o(1)
n − 1

η ′m,m = 0 (60)

Hence, as n → ∞, the odd moment E
f (n)
Λ

[
(1 − Λ)2m+1] is

given by

lim
n→∞
E
f (n)
Λ

[
(1 − Λ)2m+1] = lim

n→∞

o(1)
n − 1

η ′m,m

= 0. (61)

Therefore, if a weighted network G satisfies the degree
condition (16), the odd moment also converges to E f̃Λ

[
(1 −

Λ)2m+1] as n → ∞. �

4. Numerical Example

We confirm the validity of the degree condition (16) and
Eq. (18) in Wigner’s semicircle law for a weighted network
G derived in Sect. 3. For brevity, we only show the results
using the BA model [13], which is a well-known random
network generation model.

Similar to [6], we generate a weighted network G with
the following procedures, based on the BA model.

1. Generate an unweighted network with n nodes and av-
erage degree σBA

avg, according to the BA model.

2. Randomly cut the links of the unweighted network until
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Table 1 Parameter configuration.

Average degree of unweighted BA network, σ(BA)
avg 40

Number of nodes of the weighted network G, n 1,000
Average degree of the weighted network G, σavg 20
Pareto index of the Pareto distribution, α 3
Number of bins, nh 50

the average degree is σavg. This procedure prevents
minimum degree σmin from being fixed, and does not
lose the scale-free property of the BA network [6].

3. Randomly assign the weight of each link using the
Pareto distribution ppar

W (w) with EpW
[
W

]
= 1. Note

that ppar
W (w) ∝ α w−α−1.

4. Divide the weight of each link by the maximum link
weight wmax. By performing this procedure, the link
weight is lesser than or equal to 1, and its distribu-
tion satisfies the condition of pW (w) used in Sect. 3.
Note that this procedure does not change the normal-
ized Laplacian matrix N .

In order to confirm the validity of the degree condi-
tion (16) in Wigner’s semicircle law for a weighted network
G, we compare eigenvalue density f (n)

Λ
(λ) of the normalized

Laplacian matrix N and semicircle distribution f̃Λ(λ). To
evaluate their difference, we use the relative error εd, which
is defined by

εd :=
1
nh

nh∑
i=1

|Fn(θi) − F∗(θi) |
F (θi)

, (62)

where θi = (i−1/2)hb +λ2 and hb = (λn−λ2)/nh . In (62),
Fn(θi) is the value obtained by dividing the number of eigen-
values of N in the interval [θi − hb/2, θi + hb/2] by n − 1.
On the contrary, F∗(θi) is the value of the integral of f̃Λ(λ)
within [θi − hb/2, θi + hb/2].

To confirm the validity of Eq. (18), we compare the
spectral radius r of the normalized Laplacian matrix N and
r̃ calculated by Eq. (18). For these comparisons, we use
relative error εr , which is defined by

εr :=
|r̃ − r |

r
. (63)

In the numerical example, the parameter configuration
shown in Table 1 is used as a default parameter configuration.

First, we confirm the relationship between the charac-
teristics of the weighted network G generated in the above
procedure and the degree condition (16). Figure 2 shows the
square of the minimum degree, σ2

min for varying values of
average degree σavg. Additionally, in this figure, we plot the
results with the average order σavg on the y axis for com-
parison. From these results, as σavg increases, the difference
between σ2

min and σavg increases, and hence the degree con-
dition (16) is readily satisfied. Figure 3 shows the second
moment EpW

[
W2] of link weights for varying values of the

Pareto index α. From this figure, as α increases, EpW
[
W2]

increases, and hence the degree condition (16) is also readily

Fig. 2 Average degree σavg vs. the square of the minimum degree, σ2
min.

Fig. 3 Second moment EpW
[
W 2] for different pareto indices α.

satisfied.
Figures 4(a) and (b) show eigenvalue density f (n)

Λ
(λ)

of the normalized Laplacian matrix N (i.e, Fn(θ)) and semi-
circle distribution f̃Λ(λ). For reference, we show the results
of all link weights w (i, j) = 1 in Fig. 4(c). According to
the results, eigenvalue density f (n)

Λ
(λ) for α = 5 is closer

to semicircle distribution f̃Λ(λ) than that for α = 3. This
is consistent with the result of EpW

[
W2] shown in Fig. 3.

Hence, we visually confirm the validity of the degree condi-
tion (16).

Figure 5 shows the relative error εd of eigenvalue den-
sity f (n)

Λ
(λ) for different average degrees σavg. In this figure,

we also show the result for all link weights w (i, j) = 1 for
reference. Since n is finite, relative error εd is not 0. We as-
sume that if the relative error εd is almost equal to the result
for w (i, j) = 1, f (n)

Λ
(λ) converges to f̃Λ(λ) as n → ∞. From

the results in Fig. 5, the relative error εd decreases as average
degree σavg increases, or as the Pareto index α increases.
The result is consistent with the results shown in Figs. 2 and
3. Hence, the degree condition (16) is valid. Moreover, the
relative error εd for α = 5 is almost the same as the that
for w (i, j) = 1. Hence, if α ≥ 5, f (n)

Λ
(λ) follows Wigner’s

semicircle law.
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Fig. 4 Eigenvalue density f (n)
Λ

(λ) of the normalized Laplacian matrix
N (i.e, Fn (θ)) and semicircle distribution f̃Λ (λ).

Figure 6 shows spectral radius r and r̃ calculated from
Eq. (18) for different average degree σavg. In this figure, we
also plot the result for all link weights w (i, j) = 1 for ref-
erence. From Fig. 6, the spectral radius r almost coincides
with r̃ except for α = 3. Hence, spectral radius r can be cal-
culated accurately using Eq. (18) if the degree condition (16)

Fig. 5 Relative error εd of eigenvalue density f (n)
Λ

(λ) for different values
of average degree σavg.

Fig. 6 Spectral radius r and r̃ calculated from Eq. (18) for different av-
erage degrees σavg.

Fig. 7 Relative error εr of r̃ calculated fromEq. (18) for different average
degrees σavg.

is satisfied.
Figure 7 shows the relative error εr of r̃ calculated from

Eq. (18) for different average degrees σavg. In this figure,
the result of all link weights w (i, j) = 1 is also plotted for
reference. According to Fig. 7, it is clear that relative error
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εr is small when the degree condition (16) is met, as with
the result shown in Fig. 5. Hence, Eq. (18) is valid as the
approximate expression of the spectral radius r .

From the above results, we conclude that the degree
condition (16) and Eq. (18) derived in Sect. 3 are valid.

5. Related Work and Discussion

In [14], [15], weighted spectral distribution (WSD) was used
to analyze a network G with the eigenvalue distribution of
the normalized Laplacian matrix N . In [16], a method was
proposed to accelerate the calculation ofWSD.WSD is given
by a set of nd elements calculated from the eigenvalues of
N , and it is specifically defined by{

(1 − θi)m FG (λ = θi)
���� θi ∈ Ωi, 1 ≤ i ≤ K

}
, (64)

where FG (λ) is the number of the eigenvalues in the interval
including λ among nd intervals equally spaced in (0, 2]. In
the above equation, m is a positive integer, and Ωi is the
i-th interval

(
(2(i − 1)/nd, 2i/nd

]
for 1 ≤ i ≤ nd . In [14],

[15], on the basis ofWSD, distance δm(G1,G2) between two
networks G1 and G2 is given by

δm(G1,G2) =
K∑
i=1

(1−θi)m
(
FG1(λ = θi)−FG2(λ = θi)

)2.

(65)

In [15], the characteristics of the Internet topology were clar-
ified using the distance δm(G1,G2). In this paper, we ex-
pounded upon the universality, that the eigenvalue distribu-
tion of N follows the semicircle distribution if the weighted
network G satisfies the degree condition (16). The univer-
sality supplied in this paper can be applied to the analysis
of WSD. For example, the semicircle distribution is used as
the standard eigenvalue distribution, and we define the mea-
sure using the distance between the eigenvalue distribution
of the weighted network G and the semicircle distribution as
in Eq. (65). Such a measure would be useful to analyze the
specialty of the weighted network G.

A power law is a property that appears in various actual
networks. In many studies (e.g., [17], [18]), the relation-
ship between the power law and network characteristics has
been analyzed. In [17], the first passage time of a ran-
dom walk was investigated in weighted scale-free networks,
where node degrees, link weights and weight degree follow
a power-law distribution. The analysis result showed that the
effect of the power law on the first passage time of a random
walk. In [18], the first meeting time of two random walks
was analyzed. It was shown that the first meeting time is
small when node degrees follow the power-law distribution.
In Sect. 4, a numerical example was shown using a weighted
BA network where link weights follow the power-law distri-
bution (Pareto distribution). According to the results shown
in Fig. 6, spectral radius r decreases as index α of the power-
law distribution increases. In [6], the information dissemi-
nation time in social networks was shown to increase as the

spectral radius r increases. From the results shown in this
paper and [6], the relationship between the power law in the
link weight distribution and the information dissemination
time can be understood.

6. Conclusion and Future Work

In this paper, we clarified Wigner’s semicircle law for a
weighted network G on the basis of random matrix theory.
This law indicates that if G with n nodes satisfies the de-
gree condition (16), the eigenvalue density of the normalized
Laplacian matrix N converges to the semicircle distribution
determined by the approximated spectral radius r̃ , as n → ∞.
Using Eq. (18), we can calculate r̃ from a few network statis-
tics (the average degree, average link weight, and square
average link weight). Hence, the eigenvalue distribution of
N can be obtained from these network statistics without giv-
ing all the matrix elements N (i, j) accurately. Our results
provide a newmethod to analyze aweighted networkG using
spectral graph theory and random graph theory.

Analyzing and designing actual networks using
Wigner’s semicircle law, as clarified in this paper, is an
interesting future study. In particular, the characteristics of
the information dissemination on social networks will be in-
vestigated, and they can aid the design of the social media to
control the speed of the information dissemination.
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