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Masaki AIDA†a), Member

SUMMARY This paper employs the nature-inspired approach to in-
vestigate the ideal architecture of communication networks as large-scale
and complex systems. Conventional architectures are hierarchical with re-
spect to the functions of network operations due entirely to implementation
concerns and not to any fundamental conceptual benefit. In contrast, the
large-scale systems found in nature are hierarchical and demonstrate or-
derly behavior due to their space/time scale dependencies. In this paper, by
examining the fundamental requirements inherent in controlling network
operations, we clarify the hierarchical structure of network operations with
respect to time scale. We also describe an attempt to build a new network
architecture based on the structure. In addition, as an example of the hierar-
chical structure, we apply the quasi-static approach to describe user-system
interaction, and we describe a hierarchy model developed on the renormal-
ization group approach.
key words: large-scale and complex systems, renormalization, adiabatic
approximation, local interaction, hierarchical structure

1. Introduction

Information and communication networks are the world’s
largest systems in the terms of both the number of devices
connected and their spatial extent. Also, by considering en-
vironmental changes such as the deepening of ties with soci-
ety and the diversification of applications, we can regard the
networks as large-scale and complex systems. How can we
design and operate such large-scale and complex systems
appropriately? What design principles are required? Before
starting concrete discussions, it is necessary to explain the
standpoint of this paper [1].

1.1 Networks as Large-Scale and Complex Systems

The most well-known large-scale and complex system is our
world. The number of components that form this world and
their diversity readily confirm that it is the ultimate large-
scale and complex system. So why is this ultimate large-
scale and complex system, the world, stable? We believe
that the world will still exist tomorrow and that the sun will
rise tomorrow just like the past. Even though we know that
no prior state is ever repeated exactly at the scale of atoms
or elementary particles that make up our world, we believe
that the world is stable. Such orderly behavior of the world
is created through so-called self-organization, synergy ef-
fect, or collective phenomena of fundamental structure. This
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framework is interesting and gives useful intention to engi-
neering. The question of where the stability or orderly be-
havior of the world comes from, probably corresponds to the
following questions. Assuming that God created the world,
what holy secrets (or gimmicks) were used at the Creation to
yield the orderly behavior of the world? Conversely, even if
we assume that God does not exist, what are the gimmicks
that make us feel that something is behind the orderly be-
haviors of the world?

This paper discusses one part of a research project that
is examining such gimmicks and focuses on the design of in-
formation communication networks as large-scale and com-
plex systems. In other words, the aim of this research is as
follows. Engineering systems are created by humans, who
consciously or unconsciously imitate the Creation of the
world by God. Our goal is to create a design approach that
can produce large-scale complex systems that autonomously
create well-ordered behavior. In this context, we discuss
the need for a network architecture based on a hierarchical
structure; its network operations exhibit time scale depen-
dencies. In addition, we focus on the relationship between
the user and the system as a typical example of the hier-
archy, and discuss how to design the hierarchy by using a
renormalization group.

1.2 Where Does the Well-Ordered Behavior of the World
Come from?

The question of what are the gimmicks that stabilize the
world can be answered in various ways. For example, one
explanation based on the anthropic principle is as follows.
First of all, the stability of the world allows the emergence of
intelligent life like human beings, and our existence allows
the world’s stability to be discussed. So, the question about
why the world is stable can arise only in a stable world, sug-
gesting that the question is some form of tautology.

Of course, we cannot give a complete answer about the
gimmicks since the natural mechanisms are not completely
understood. However, since our purpose is not to under-
stand nature but apply some form of gimmicks to engineer-
ing systems, we can try the currently considered gimmicks
to evaluate their usefulness for engineering. In this paper,
we consider the following two gimmicks.

• Action through a medium (Local interaction) [2]
In physical systems, there are two concepts that describe
the interactions that can occur between two objects oc-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



AIDA: USING A RENORMALIZATION GROUP TO CREATE IDEAL HIERARCHICAL NETWORK ARCHITECTURE WITH TIME SCALE DEPENDENCY
1489

cupying different positions; action at a distance and ac-
tion through a medium (local interaction). The former
yields a model in which two widely-separated objects in-
teract directly. The latter does not permit the existence
of direct interaction between widely-separated objects; it
assumes that interaction occurs only between spatially-
adjacent objects, and the effect of interaction is gradually
exchanged between the objects. Modern physics supports
the action through medium concept, so interaction occurs
locally. In such a model, space is filled with physical
quantities at all points (which forms a field), and any vari-
ation in the physical quantity at a point would propagate
through the field at finite speed.
• Renormalizability (Reducing the degrees of freedom in

dynamics)
When attempting to observe a massive aggregation of ex-
tremely small objects that interact in complex ways, we
can more easily comprehend the aggregate (or system)
by reducing either the temporal or spatial resolution (or
both), i.e., coarse graining transformation. In renormal-
ization theory, complex systems are understood by ob-
serving changes in a measurable attribute identified by
the coarse graining transformation. The coarse grain-
ing transformation of observations is called the renormal-
ization transformation. We consider a system that ex-
hibits large (or infinite) degrees of freedom at the micro-
scopic scale. If the system is well described by small (or
finite) degrees of freedom at the macroscopic (measur-
able) scale through renormalization transformation, the
system is called renormalizable. While the renormaliza-
tion theory has many brilliant successes in various fields
of physics, it must be customized for each problem. That
is, there is no general analytical method that can be freely
applied in various fields [3].

In the action through a medium concept, an object in-
teracts only with its neighbors, at any instant. In the world
of action at a distance, the action of an object instantly influ-
ences all places, including the end of the universe, and con-
versely the action of any object, regardless of its location,
instantly influences the object. In this situation, the compo-
nents of world are associated with each other very strongly,
which might limit the flexibility of the world. Therefore, the
action through a medium concept appears to be a key gim-
mick in producing stable systems, while ensuring the free-
dom of local action.

Even if we do not fully comprehend the attributes of
micro-components such as atoms or we do not understand
the complete mechanisms of nature, we can admire the or-
derly behavior of the world. This means that even if there
are huge degrees of freedom when the world is observed at
the micro-scale, almost all degrees of freedom are missing at
the human perceptible macro-scale, and only a small num-
ber of macro parameters are needed to describe the world.
This confirms the renormalizability of the world.

Fig. 1 An example of hierarchical architecture exhibiting time scale
depndency.

1.3 Related Work

The conventional architecture has a hierarchical structure
with respect to functions of network operations, but it might
not have any fundamental justification, only implementation
benefits. In contrast, the large-scale systems found in na-
ture exhibit hierarchies that are space/time scale dependent;
these hierarchies underlie the orderly behavior of the sys-
tems. In this paper, we assume that the hierarchy concept
is the key to designing and operating large-scale and com-
plex systems. In order to apply this concept to engineer-
ing systems, we adopt the nature-inspired approach [1], [4].
Figure 1 shows an example of the hierarchical structure of
network control mechanisms that yield operations with time
scale dependency. For example, TCP, a protocol of the trans-
port layer, includes functions acting on wide range of time
scale. Window flow control acts around round trip time, and
exponential backoff sometimes acts around dozens of sec-
onds. These functions might be split into different layers of
time scale.

As another approach for designing network control
methods inspired by phenomena in nature, the bio-inspired
approach has been actively studied [5]–[7]. Reflecting
the diversity of biological phenomena, the bio-inspired ap-
proach covers a wide variety of applications of network
issues, but the relevant technology is self-organization to
form autonomous structures. The typical example of self-
organization in the bio-inspired approach is the reaction dif-
fusion model, which is based on the Turing pattern. This
model demands that the values of several parameters be
tuned, but this is difficult to do in general networks. In addi-
tion, the interaction between two different state variables is
required, but this yields long convergence times.

Renormalization groups for communication networks
have been studied for evaluating the scalability of routing
protocols; this requires the introduction of a renormalization
transformation of the network topology [8]. However, net-
works with hierarchical structure have not been discussed.

The rest of this paper is organized as follows. Sec-
tion 2 starts with an overview of the network architecture
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based on our nature-inspired approach. After discussing the
hierarchical structure with spatial and temporal dependen-
cies, we show a design approach for the hierarchy layers.
Also, we explain the quasi-static approach, which describes
the interaction between user and system, as an example of
the inter-hierarchy layer design process. Section 3 shows
the design of a hierarchical structure based on the renormal-
ization group. After introducing the notion of renormaliza-
tion, we explain the quasi-static approach on the basis of the
renormalization group. Section 4 clarifies the structure of
the quasi-static approach by using adiabatic approximation
and perturbation of non-adiabatic effects. We conclude this
paper in Sect. 5.

2. Network Architecture Based on Natural Order

In this section, based on two gimmicks introduced in
Sect. 1.2, we briefly outline a network architecture with hi-
erarchical structure with time scale dependency. Next, we
introduce concrete examples of action through a medium
(local-action theory) and renormalization.

2.1 Hierarchical Structure with Time Scale Dependent
Network Operations

Various systems in nature exhibit well-ordered behavior due
to their hierarchical structure with spatial and temporal scale
dependencies. In this paper, we assume that the two gim-
micks introduced in Sect. 1.2 are essential for producing the
stability and well-ordered behavior of large-scale and com-
plex systems. Here, we briefly describe the outline of the
relationship between the two gimmicks and the hierarchical
structures of network systems.

For simplicity of discussion, let us consider a one-
dimensional space. Let p(x, t) be a (density) function of
position x and time t. This function represents the state
or performance at each position, and x denotes the logical
or physical position in the network†. We assume that the
change in the value of the density function at each point is
caused only by the migration of the quantity considered, the
quantity is never created nor annihilated in the network††.
The temporal evaluation equation, the master equation, is
written as

∂

∂t
p(x, t) = −

∫ ∞

−∞
w(x, r, t) p(x, t) dr

+

∫ ∞

−∞
w(x − r, r, t) p(x − r, t) dr, (1)

where w(x, r, t) is the transition rate per unit of time, and its
transition is from x to x+ r at time t. Here, we introduce the
n-th order moment of w(x, r, t) with respect to transition r as

cn(x, t) :=
∫ ∞

−∞
rn w(x, r, t) dr, (2)

and use Taylor expansion f (x − r) = e−r ∂∂x f (x) of function
f (x). The temporal evolution of p(x, t) is given by infinite

series of spatial derivatives as

∂

∂t
p(x, t) =

∞∑
n=1

(−1)n

n!
∂n

∂xn
cn(x, t) p(x, t). (3)

This is called Kramers-Moyal expansion [9]．Since the se-
ries on the right side of (3) contains spatial derivatives of
infinite order, the evolution of p(x, t) at point x is influenced
by the state of p(x+r, t) at other points x+r, simultaneously.
Note that since this is true for any value of r, (3) includes ef-
fects such as action at a distance. In order to eliminate the
effect of action at a distance, let us consider the truncation of
the series at some finite order. If the series is truncated (that
is, we can find some n0 such that cn(x, t) = 0 for all n > n0),
then the series only includes spatial derivatives of finite or-
der, and thus the temporal evolution of p(x, t) is determined
only by information in the infinitesimally close neighbor-
hood of x†††. This corresponds to action through a medium.
Therefore, according to the concept of the action through
medium, we would be dealing with models based on partial
differential equations or difference equations, inevitably.

In network systems, action through a medium or local
interaction is a notion used for convenience, and of course
the range of local interaction is not infinitesimal in the math-
ematical sense. Local interaction at a certain time scale re-
quires the following three factors: local information that
can be collected without degradation in information fresh-
ness, neighborhood (the corresponding spatial range), and
autonomous interaction with the neighborhood based only
on the local information. Therefore, local interaction can be
defined in each time scale and it might not seem local if we
observe it at microscopic scale (Fig. 2)．

One of most elegant and mysterious facts in nature is
that systems having different microscopic structures occa-
sionally exhibit the same macroscopic behaviors. This is
referred to as the universality of natural phenomena [3]．
As an example of the universality, the diffusion equation in
Sect. 2.2 can cover various diffusion phenomena (for exam-
ple, heat flow in solids, the density of ink in the liquid, and
the density of gas in the air). The only difference is found
in the value of a constant (the diffusion coefficient) and dif-
ference in the microscopic structure is reflected in the value
of the diffusion coefficient. In this sense, we can recognize
that this type of temporal evolution equation shows the time
scale decomposition of hierarchical systems. Indeed, this
decomposition itself enables us to recognize that the world
is stable. The form of the temporal evolution equation de-
scribes the phenomena present at the observed time scale

†As shown in Sect. 2.3, x denotes the position in abstract pa-
rameter space.
††Generalization to include creation and annihilation is easy.

However, if we introduce them now, we cannot distinguish cre-
ation/annihilation from teleport, that is a typical non-local effect.
†††Since the structure of networks is discrete, the differential

equation becomes a difference equation. In this situation, the term
of higher-order derivative requires information of far distant com-
ponents even if it is finite-order. A discrete model based only on
local information is discussed in Sect. 2.2.
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Fig. 2 Hierarchical structure of networks with temporal and spatial scale
dependencies: The range of local interaction is not local if we observe it at
a more microscopic scale.

and effects from more finely granular structures are reduced
and represented as the value of the coefficient. In contrast,
the effects from longer time scales impacts the initial and
the boundary conditions of the equation.

From the above discussion, in order to compose the hi-
erarchical network architecture with time scale dependen-
cies, we need to resolve the following two issues:

• Designing action rules for each layer of the hierarchy
Let us consider, for a certain time scale, a control action
based only on local information where actions influence
only the neighborhood. In order to establish the concrete
control action, we need to develop a framework of au-
tonomous distributed control based on action through a
medium. That is, the action rule in a certain layer should
be described by a partial differential equation.
• Understanding the mutual interaction of layers in the hi-

erarchy
Let us consider a situation observing phenomena of
shorter time scale. In order to understand the mutual in-
fluence between actions at different time scales, we need
to know the appearance of the phenomena at longer time
scales. That is, the coefficients of the partial differential
equation, that describes the action rule, should be deter-
mined so as to reflect effects of the underlying layer. This
procedure requires us to develop a renormalization theory
customized for networks.

In the following two subsections, we show examples of
these issues, respectively.

2.2 Local Interaction and Autonomous Distributed Con-
trol

Here, we explain the design of an autonomous distributed
mechanism for network control, based on local interaction
using the diffusion phenomena as an example. Assuming
the change in density function p(x, t) occurs only with con-
tinuous flow, i.e., we can ignore creation, annihilation, and
jump to other position, then p(x, t) satisfies the continuous
equation,

∂p(x, t)
∂t

= −∂J(x, t)
∂x

, (4)

where J(x, t) denotes a one dimensional vector representing
the flow amount of p(x, t) that moves through x per unit of
time. In diffusion, the flow is from higher density side to
lower density side, and flow strength is proportional to the
gradient of the density, so we have

J(x, t) = −κ∂p(x, t)
∂x

, (5)

where κ is a positive constant and is called the diffusion co-
efficient. By substituting (5) into (4), we have the temporal
evolution equation of p(x, t) as follows:

∂p(x, t)
∂t

= κ
∂2 p(x, t)
∂x2

. (6)

This is the well-known diffusion equation. Diffusion is a
common phenomenon seen everywhere in nature. Surpris-
ingly, an extremely wide variety of diffusion phenomena can
be described by the diffusion Eq. (6), as explained in the pre-
vious subsection. The complex microscopic structure char-
acteristic of each phenomena is reduced, and the characteris-
tics of each phenomenon are expressed by the small number
of parameters (in this case, only one parameter).

For the initial condition p(x, 0) = p0(x), (6) has the
following solution.

p(x, t) =
∫ +∞

−∞
N(x − y, 2κt) p0(y) dy, (7)

where N(x, σ2) is the density function of the normal distri-
bution with mean 0 and variance σ2, that is,

N(x, σ2) =
1√

2πσ2
e−

x2

2σ2 . (8)

The physical meanings of (7) are simple. The density func-
tion at the initial state at each point diffuses, over time, in
accordance with the normal distribution, and the solution is
the superposition of the density functions.

As seen in this example, from an engineering stand-
point, the behavior of systems based on action through a
medium (local interaction) can be associated with the frame-
work of autonomous distributed control [1], [2]. The state of
the entire system exhibits orderly behavior as described by
the solution (7) of the differential Eq. (6), even though all
subsystems autonomously act based only on their local in-
formation, as (5), and nobody knows the information for the
entire system. Applications of autonomous control using the
diffusion phenomenon include traffic control for congestion
avoidance and load balancing systems [2], [4], [10], [11].

The recipe of the framework of autonomous distributed
control based on local interaction is summarized in Fig. 3. If
the behavior of subsystems is properly designed at a micro-
scopic scale, this framework allows us to indirectly control
the behavior of the whole system at a macroscopic scale [2].

For the example of diffusion, we considered a con-
trol mechanism that harmonizes the network state by the
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� �
• Let us think about the behavior of state that the whole system has

to have ((7) and (9) correspond). Moreover, let us find the par-
tial differential equation that has the solution that provides such a
behavior ((6) and (10) correspond).

• Let us identify the local interaction that the partial differential
equation describes ((5) and (11) correspond). Finally, we design
the behavior of subsystems to replicate local interaction.

• As a result, even though the autonomous action of each subsys-
tem is based only on its local information, the state of the whole
system exhibits the desired behavior as a solution of the differen-
tial equation.� �

Fig. 3 Recipe for designing mechanisms of autonomous distributed
control based on local interactions.

Fig. 4 Renormalization transformation of diffusion phenomenon.

smoothing effects of diffusion. We can introduce another
mechanism that produces spatial patterns of a finite size.
The following procedure is an application of the recipe
shown in Fig. 3. First, we define a new function q(x, t) by
using (7) as

q(x, t) :=

√
2κe2ct

σ
p

⎛⎜⎜⎜⎜⎜⎝
√

2κe2ct

σ
x, e2ct

⎞⎟⎟⎟⎟⎟⎠ , (9)

where c and σ are positive constants. This function is ob-
tained by the procedure that makes the temporal evolution of
the solution (7) of the diffusion equation exponential against
time and simultaneously scales the spatial axis in accor-
dance with diffusion, as shown in Fig. 4. The limit distri-
bution is limt→∞ q(x, t) = N(x, σ2). This transformation (9)
is a sort of renormalization transformation and is discussed
in the next section. In accordance with the approach shown
in Fig. 3, we can obtain the temporal evolution equation of
q(x, t) and the corresponding local-action rule, as

∂

∂t
q(x, t) = c

(
∂

∂x
x + σ2 ∂

2

∂x2

)
q(x, t), (10)

J(x, t) = −c

(
x + σ2 ∂

∂x

)
q(x, t). (11)

This control mechanism produces a spatial structure whose
size depends on the value of parameter σ, and we can apply
it, for example, to autonomous distributed clustering mech-
anisms in ad hoc networks. This mechanism has a desir-
able property for application to actual networks. Since the
temporal evolution Eq. (10) contains up to the second-order
derivative, local interaction requires only local information,

even when the networks are given a discrete structure. In
order to enable to apply this control mechanism to any net-
work topology, we have to enhance it so that the local inter-
action does not depend on the coordinate system [12], [13].

Alternatively, if we restrict the network topology to a
regular grid, we can apply Fourier transformation and de-
fine a higher-order derivative. By using them, other types of
structure formation mechanisms for the restricted networks
are possible [14].

2.3 Quasi-Static Approach as an Example of Creating Hi-
erarchical Architecture

Let us consider the effect that arises between different lay-
ers of the hierarchy. The characteristic whereby the degrees
of freedom of a system are reduced when the system is ex-
amined at a macroscopic scale is not special in itself, and
we can find many examples in natural and engineering sys-
tems. Statistical multiplexing effect (economy of scale) in
the design of communication channels is one example. If
we aggregate a lot traffic flows, the statistical effect tends
to decrease the relative variation around the average, and
therefore the designs that use the average tend to work well.
In addition to the statistical effects, we would like to take
certain networking effects into consideration. The mean-
ing of the networking effects is as follows. When we try
to understand the characteristics of the entire system, one
approach is to investigate the details of each component of
the system. This concept is called reductionism. The net-
working effect means the phenomena that cannot be under-
stood through reductionism. That is, the characteristics of
each component are not the sole determinant of the char-
acteristics of the entire system, instead we must consider
the networking effects generated by component interaction.
In this situation, the effects created by the characteristics of
each component become weak but the networking effect be-
comes dominant, and new non-trivial characteristics emerge
at the macro-scale.

One example of the above situation is the quasi-static
approach; it describes the retry traffic generated by interac-
tion between users and a system [15]. This approach has the
following characteristics.

• Description of interaction between users and a system
The response time of the system increases under conges-
tion caused by an increase in input traffic. The increas-
ing response time triggers an increase in retry traffic from
users, and the retry traffic worsens congestion. In under-
standing the system behavior, the interaction between the
users and the system is essential, not their individual char-
acteristics.
• Decomposition of users and system dynamics

Since the state transition rate of the system is extremely
high in high-speed networks compared to the time-scales
perceived by humans, we utilize the difference in time
scales to decompose the layers in the hierarchy. This pro-
cedure is a kind of renormalization transformation and is
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Fig. 5 Extended M/M/1 model with retries.
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Fig. 6 State transition rate diagram in which the retry traffic is
proportional to the number of currently active customers.

discussed in subsequent sections.

The simplest model that addresses the interaction be-
tween users and a system is the extended M/M/1 model that
includes retries (Fig. 5). We assume that the rate of retry
traffic is proportional to the number of customers in the
system, because the number of customers in the system in-
creases under congestion. As the most primitive model, let
us consider a model in which the rate of retry traffic is pro-
portional to the number of customers who currently sojourn
in the M/M/1 system, the currently active customers. The
state transition rate diagram is shown in Fig. 6, where λ0 is
the rate of primary traffic (without retries), μ is the service
rate, and ε (≥ 0) is a proportionality constant. This model
does not have a steady state when ε > 0 even if ε � 1, so
the input traffic with retries diverges.

Since the volume of retry traffic in actual systems does
not diverge in normal operations, the above model fails to
describe actual traffic. What is wrong with the above model?
The assumption that the rate of retry traffic is proportional
to the number of currently active customers means that the
system speed is extremely slow, or the time resolution of
customers’ responses is relatively high. In other words,
customers can react immediately in response to the present
state of the system. However, in actual systems, since the
customers cannot react immediately, the model depicted in
Fig. 6 is inappropriate.

If the customers’ time resolution deviates from the
model depicted in Fig. 6, the retry traffic depends not only
on the current state but also on the past state. For example,
by measuring the number of customers in the system at ap-
propriately chosen time points, we can estimate the average
number of customers in the system for a certain period. We
consider that the retry traffic depends on the average num-
ber. If we consider the average of the past n measurements,
the state transition rate diagram can be expressed as an n-
dimensional Markov chain. However, since n � 1 in high-
speed networks, the state space explodes and this model be-
comes difficult to calculate.

The quasi-static approach has been introduced for re-
solving this problem; it can evaluate the input traffic rate and

Fig. 7 Graphic assessment of system stability.

the stability of the system. This approach is briefly summa-
rized as follows. First, we introduce time scale T that rep-
resents the time scale that matches the human response rate
(for using the communication service). Next, we consider
discrete time intervals that are T long. Since the system
speed is very high, T is very long for the system but realistic
for the customers. Thus, we regard that the system is basi-
cally in equilibrium in each T , and any change in the system
maintains the equilibrium (i.e., it is quasi-static).

Based on the above assumption, we represent the input
rate including retry traffic at discrete time k as λk. The input
rate λk+1 at discrete time k + 1 is obtained from sum of the
primary traffic rate λ0 and the retry traffic rate determined
by the input rate λk at discrete time k, as

λk+1 = λ0 + ε
λk/μ

1 − λk/μ
, (12)

where, the second term on the right hand side denotes retry
traffic, and at equilibrium, it is proportional to the average
number of active customers of M/M/1 [15]. This model cor-
responds to the high-speed limit of the system and allows us
to extract a simple relation between users and the systems
as a deterministic model.

We define that the system is stable if the input traffic
does not diverge, that is, limk→∞ λk < ∞. Stability can be
discussed graphically. In Fig. 7, λk+1 = f (λk) shows (12).
If there are intersections of f (λk) and the line with gradient
of 1, the system is stable under certain initial conditions. If
there is no intersection, the system is instable.

In actual systems, since the speed of the systems is high
but finite, the approach takes the difference from the deter-
ministic model into consideration as fluctuations (Fig. 8).
Then, by choosing an appropriate quantity X(t) that repre-
sents the volume of input traffic, the temporal evolution of
X(t) obeys the following stochastic process,

dX(t) = g1(X) dt + g2(X) dW(t), (13)

where g1(X) denotes the deterministic change obtained from
the infinite-speed limit of the system. W(t) is the Wiener
process for describing the difference from the infinite-speed
model as fluctuations, and g2(X) denotes the strength of the
fluctuations. Changing the perspective, if p(x, t) is the prob-
ability density function of X(t), the temporal evolution equa-
tion of p(x, t) is expressed as the following Fokker-Planck
equation [9],
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Fig. 8 Concept of the quasi-static approach.

∂

∂t
p(x, t) =

(
∂

∂x
g1(x) +

∂2

∂x2
g2(x)

)
p(x, t). (14)

From the discussion of the relationship between different
layers of the hierarchy, we obtain a partial differential equa-
tion. The quasi-static approach describes the interaction be-
tween layers by using the difference in time scales and sup-
pressing the details of the microscopic structure. Hereafter,
we reconsider the quasi-static approach from the viewpoint
of renormalization.

3. Introduction of a Renormalization Group and Its
Application to the Quasi-Static Approach

In the conventional approach to designing networks, we tend
to believe that detailed information of state will yield pre-
cise control or an exact design. However, in the hierarchical
architecture with space/time scale dependency, since the de-
tails of the microscopic lower layer cannot be recognized
through macroscopic observations, we need to know what
kind of quantities can be obtained at the macroscopic higher
layer, systematically. Conversely, the quantity obtainable
from higher layer is what is essential for describing the rela-
tionship between different layers. This is because the unob-
servable quantities cannot affect the higher layer, and cannot
be controlled from the higher layer. In this section, in order
to describe the architecture between layers, we introduce the
notion of renormalization, apply it to the formulation of the
quasi-static approach, and discuss its physical meaning.

3.1 Renormalization Transformation and Renormalization
Group

Renormalization was originally developed in the field of
quantum electro dynamics in the 1940’s by Tomonaga,
Schwinger, and Feynman [16]. Wilson clarified its phys-
ical meaning and introduced the renormalization group in
the 1970’s [17].

Renormalization transformation is defined as the com-
bination of coarse graining transformation and scaling. Let
us consider two examples. The first one is the renormaliza-
tion of diffusion (Fig. 4). The temporal evolution of diffu-
sion corresponds to coarse graining transformation, in this

Fig. 9 Renormalization transformation of infinite 2-dimensional lattice.

case. As a second example, let us consider an infinite Go
board. Each grid point is occupied by a Go stone and its
color is black with probability p or white with probability
1− p. The problem is how to determine its appearance from
afar [18]. First, we adopt the following rule to realize 2 × 2
subsampling.

• A black stone is set if the 2×2 grid includes three or more
black stones.
• A white stone if 2 × 2 grid includes less than three black

stones.

White is slightly favored because white is the more visually
prominent than black. This is a coarse graining transforma-
tion and yields 1/4 simplification, and then we apply scaling
(Fig. 9). These two rules form a renormalization transforma-
tion. The probability that the unified grid is black after ap-
plying the renormalization transformation just once, R(p),
is expressed as

R(p) = p4 + 4p3(1 − p). (15)

Here, we can find pc such that R(pc) = pc and 0 < pc < 1,
as

pc =
1 +
√

13
6

(	 0.7676). (16)

This is the critical probability. If p > pc, the board looks
black from afar and if p < pc it looks white. Thus, by us-
ing the renormalization transformation, we might be able to
describe what can be observed from the macroscopic scale,
systematically. The detailed value of p does not affect the
macroscopic observation.
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Fig. 10 〈QT 〉t in the retry traffic model of (19).

3.2 Renormalization Transformation of the Arrival Rate
Including Retry Traffic

Let us introduce the renormalization transformation to the
M/M/1 model with retry described in Sect. 2.3. We define
the input rate Λ(t; T ) at time t as

Λ(t; T ) = λ0 + ε 〈QT 〉t , (17)

where ε is a positive constant and 〈QT 〉t is a measure of the
average number of customers in the system, more specif-
ically, 〈QT 〉t is the average within the human-perceptible
time period T immediately before the present time t. So,
rate Λ(t; T ) is given by the sum of the rate λ0 for the primary
traffic and the rate for the retry traffic, which is proportional
to the average number of customers, in the past period.

The following are two concrete examples of the aver-
age number of customers, 〈QT 〉t. Let Q(t) be the number of
customers in the system at time t, and the first example is

〈QT 〉t :=
1
T

∫ t−

t−T
Q(s) ds. (18)

This model means the rate of retry traffic at time t is propor-
tional to the average number of customers in [t − T, T ). The
second example is

〈QT 〉t :=
1
T

∫ t−

−∞
Q(s) e−

1
T (t−s) ds. (19)

This model means that the retry from customers at s (< t) oc-
curs randomly after exponential time with mean T (Fig. 10).
Regardless of whether we choose (18) or (19) as the defi-
nition of 〈QT 〉t, we can develop a unified discussion. Here-
after, unless otherwise noted, the results are valid for both
cases.

Ascribing to humans the ability to react immediately
corresponds to the limit T → 0. From

lim
T→+0

〈QT 〉t = Q(t−), (20)

and λ(t) := Λ(t;+0), we have

λ(t) = λ0 + ε Q(t−). (21)

This corresponds to the system model described by the state

transition rate of Fig. 6.
Note that the input rate including the retry traffic and

the number of customers in the system influence each other.
The variation of the input rate directly affects the number of
customers, and conversely the average number of customers
affects the input rate through (17). From this discussion,
if the human perceptible time T is changed, the input rate
changes through (17) which affects the value of Q(t). So, to
be exact, the number of customers Q(t) must be a quantity
that depends on the human perceptible time T .

In order to take the T -dependence of Q(t) into consid-
eration, we introduce the following renormalization trans-
formation. First, we define a coarse graining transforma-
tion. For α ≥ 1, we start to consider the situation that the
human time resolution is lowered by 1/α. We call the corre-
sponding transformation Kα of the input rate the Kadanoff
transformation. The concrete form of Kα for the average of
(18) is

Kα(Λ(t; T )) = Λ(t;αT ),

= λ0 +
ε

αT

∫ t−

t−aT
Q∗(α, s) ds, (22)

and that for (19) is

Kα(Λ(t; T )) = Λ(t;αT ).

= λ0 +
ε

αT

∫ t−

−∞
Q∗(α, s) e−

1
αT (t−s) ds (23)

Here, Q∗(α, t) represents the number of customers according
to parameter α, this was changed from Q(t) by the lowering
of the human time resolution. Of course, Q∗(1, t) = Q(t)†.

To enable a unified discussion of both cases of (18) and
(19), we introduce the following notation for Q∗(α, t); For
(18),

〈
Q∗α,β,T

〉
t

:=
1
T

∫ t−

t−T
Q∗(α, βs) ds, (24)

and, for (19)

〈
Q∗α,β,T

〉
t

:=
1
T

∫ t−

−∞
Q∗(α, βs) e−

1
T (t−s) ds. (25)

Using this notation, both (22) and (23) are written in the
same form as

Kα(Λ(t; T )) = λ0 + ε
〈
Q∗α,1,αT

〉
t
. (26)

Next, we introduce the adjustment of time scale by 1/α
times, as

Sα(Λ(t; T )) = λ0 + ε
〈
Q∗1,α,T/α

〉
t
. (27)

Since this is merely a change of scale on the time axis, the
form of Q(t) = Q∗(1, t) is unchanged.

By combining the above two transformations [3], we
†According to this notation, Q(t−), which appears in (20) and

(21), is expressed as Q∗(+0, t−), if we assume α < 1.
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Fig. 11 Renormalization transformation for the model of (18).

define the renormalization transformation Rα as,

Rα := Sα ◦ Kα. (28)

The concrete form of the renormalization transformation of
the input rate Λ(t; T ) is denoted as

Rα(Λ(t; T )) = {Sα ◦ Kα}(Λ(t; T ))

= λ0 + ε
〈
Q∗α,α,T

〉
t
. (29)

Figure 11 explains the procedures of the renormalization
transformation for the case that the average number of cus-
tomers is chosen as (18). Incidentally, the renormalization
transformations form a semi-group,

R1(Λ(t; T )) = Λ(t; T ), (30)

{Rα ◦ Rβ}(Λ(t; T )) = Rαβ(Λ(t; T )), (31)

{Rαβ ◦ Rγ}(Λ(t; T )) = {Rα ◦ Rβγ}(Λ(t; T )), (32)

that is called as the renormalization group. Hereafter we
denote Λα(t; T ) := Rα(Λ(t; T )) for brevity.

3.3 Renormalization Group Equation of Arrival Rate and
the Quasi-Static Approach

Since we cannot know the concrete form of Q∗(α, t) for a
general α, we cannot determine the average

〈
Q∗α,α,T

〉
t
in (29)

and therefore the input rate Λα(t; T ) cannot be determined
for a general α. Here, we consider a special case of the
renormalization transformation with α � 1, and investigate
Λα(t; T ). This case means that the speed of the system is
much higher than that of humans as expressed by percepti-
ble time scale T . We assume the following renormalization
group equation,

∂

∂α
Λα(t; T ) = 0. (33)

The physical meaning of this equation is that even if we
lower the human time resolution further, no new behavior
emerges.

To see explicitly the effects of differentiation with re-
spect to α, we change the expression of (29) into a form
that simplifies investigation. Since Sα is merely a change of
scale on the time axis, it is an identity transformation, as a
transformation of Λ(t; T ). Therefore, (27) is expressed as

Sα(Λ(t; T )) = λ0 + ε
〈
Q∗1,α,T/α

〉
t

= λ0 +
〈
Q∗1,1,T

〉
t

= Λ(t; T ). (34)

From (33) and (34), we have

∂

∂α
Λα(t; T ) =

∂

∂α
Kα(Λ(t; T ))

= ε
∂

∂α

〈
Q∗α,1,αT

〉
t

= 0. (35)

This means the average
〈
Q∗α,α,T

〉
t

is unchanged even if T
becomes longer, and so we can recognize that the average
remains in a steady state.

4. Reduction of Dynamics and Quasi-Static Approach

In this section, we introduce the adiabatic approximation
and show that it leads to the same result obtained by the
renormalization. In addition, we discuss the description of
non-adiabatic effects and relationship to the quasi-static ap-
proach.

4.1 Adiabatic Approximation and Renormalization Group
Equation

Adiabatic approximation was originally used in solid state
physics, and is based on the fact that the nuclei of mole-
cules and solids move much more slowly than electrons. It
approximates the state of electrons by assuming that the nu-
cleus is stationary. This approach is applicable to systems
consisting of very slow and very fast components.

First, we introduce the adiabatic approximation taken
from [19]. Let us consider the following system. The sys-
tem moves to relaxed state q(t) = 0 if no external force ex-
ists, and the strength of the relaxation is proportional to the
difference q(t) from equilibrium 0. When we apply external
force F(t) to the system, we have

d
dt

q(t) = −γq(t) + F(t), (36)

where q(t) is the portion of the input rate that corresponds to
retries,

q(t) := Λα(t; s) − λ0, (37)

and γ > 0. The solution of (36) is given as

q(t) = ε
∫ t

0
e−γ(t−s) F(s) ds. (38)
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We can recognize that q(t) is the response to input F(t). In
general, q(t) depends on not only F(t) at the present mo-
ment but also the external force in the past. If q(t) changes
much more rapidly than F(t), we can recognize that only
the external force at the present moment influences q(t). For
example, let the time constant of F(t) be 1/δ, and we set
F(t) = ae−δt where a is a constant. Substituting this into
(38) and executing the integration, we obtain

q(t) =
a
γ − δ

(
e−δt − e−γt

)
. (39)

Here we use the assumption that the change of q(t) is much
faster than that of F(t), that is γ � δ, so

q(t) 	 a
γ

e−δt ≡ 1
γ

F(t). (40)

This situation means the time constant of the system, 1/γ,
is much smaller than the time constant of the external force,
1/δ.

This treatment is called adiabatic approximation. Note
that the approximation (40) is also obtained from (36) by
setting dq(t)/dt = 0.

Next, we consider the relationship between the adia-
batic approximation and the renormalization group. Let us
start from (29),

Λα(t; T ) = λ0 + ε
〈
Q∗α,α,T

〉
t
. (41)

The adiabatic approximation gives

Λα(t; T ) = λ0 +
1
γ

F(t). (42)

By comparing this with (41), we have the slow external force
as

F(t) = γε
〈
Q∗α,α,T

〉
t
. (43)

Thus, (36) becomes

d
dt

q(t) = γ
{
−q(t) + ε

〈
Q∗α,α,T

〉
t

}
, (44)

and, from the adiabatic approximation of (44), we have

q(t) = ε
〈
Q∗α,α,T

〉
t
. (45)

In addition, by applying the adiabatic approximation
dq(t)/dt = 0 again, we have

d
dt

〈
Q∗α,α,T

〉
t
= 0. (46)

The physical meaning of this result is that the average num-
ber of customers is independent of time. In other words, we
can regard the average

〈
Q∗α,α,T

〉
t
is in a steady state, the same

as (35) in renormalization.

4.2 Perturbation Expansion of Non-Adiabatic Effects and
Understanding of the Quasi-Static Approach

Both the renormalization group Eq. (33) and the adiabatic

approximation correspond to the limit of the situation that
the system speed is significantly higher than that of the cus-
tomers, and both give the same result. However, as shown
in Fig. 8, our original goal is a system that has high but finite
speed. Therefore, we should also take non-adiabatic effects
into consideration.

We introduce the parameter δ that represents the users’
speed and consider the slow variable

〈
Q∗α,α,T

〉
t

and the fast
variable q(t), as follows.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dt

〈
Q∗α,α,T

〉
t
= δG

(〈
Q∗α,α,T

〉
t
, q

)
,

d
dt

q(t) = −γ q(t) + γε
〈
Q∗α,α,T

〉
t
,

(47)

where G(·, ·) is an unknown function. The human per-
ceptible time scale is extremely long compared with that
of the system. So, we introduce the smallness parameter
η := δ/γ = 1/T � 1, where η represent the ratio of users’
speed to the system speed. Next, we set the time constant of
the system as 1/γ = 1. This procedure means the change of
the unit of time or the replace of t → (t/γ), and we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dt

〈
Q∗α,α,T

〉
t
= ηG

(〈
Q∗α,α,T

〉
t
, q

)
,

d
dt

q(t) = −q(t) + ε
〈
Q∗α,α,T

〉
t
.

(48)

We need to investigate the asymptotic behaviors, for t →
∞, of the system that include adiabatic and non-adiabatic
effects. To this end, we take the perturbative approach with
respect to the power of the smallness parameter in order to
describe the small non-adiabatic effects around the adiabatic
approximation.

First, we consider the lowest order of the perturbation.
We introduce the notation of the slow variable in (45) as

〈Q∗〉t :=
〈
Q∗α,α,T

〉
t
, (49)

for brevity. The adiabatic approximation is then expressed
as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

qad(t) = ε 〈Q∗〉t ,
d
dt
〈Q∗〉t = ηG

(〈Q∗〉t , qad(t)
)
.

(50)

In order to realize the higher order correction of non-
adiabatic effects around the adiabatic approximation, we
take the following approach [20]–[22].

• Because the neutral stability of 〈Q∗〉t triggers the emer-
gence of a secular term (that includes the factor (ηt)) in
perturbation, perturbation expansion cannot be applied to
〈Q∗〉t. However, since (d 〈Q∗〉t /dt) is a small variable, we
can apply perturbation expansion to it.
• The perturbation expansion of q(t) around qad(t) is of

course possible.
• q(t) is dependent on time only through 〈Q∗〉t.
• As long as the perturbation is small (that is, 〈Q∗〉t is a

slow variable), there is an invariant manifold to which the
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trajectory of q(t) approaches for t → ∞.

This treatment was introduced to eliminate the secular term
from the perturbation expansion based on the renormaliza-
tion group [20], and to reduce the degrees of freedom in
evaluation equations that describe system dynamics [21]. In
any case, the existence of the invariant manifold is critically
important in successfully applying this treatment, and it is,
exactly, renormalizability [22].

According to the above discussion, let us consider the
following perturbation expansions⎧⎪⎪⎪⎨⎪⎪⎪⎩

q(t) = q0(t) + ηq1(t) + η2q2(t) + η3q3(t) + · · · ,
d
dt
〈Q∗〉t = v0(t) + ηv1(t) + η2v2(t) + η3v3(t) + · · · .

(51)

Based on the adiabatic approximation (50),

q0(t) = qad(t), and v0(t) = 0. (52)

By using the expansion of q(t), the higher-order correction
of non-adiabatic effects in

(
d 〈Q∗〉t /dt

)
is expressed as

d
dt
〈Q∗〉t = ηG

(
〈Q∗〉t , q0(t) + ηq1(t) + O(η2)

)
= ηG

(〈Q∗〉t , ε 〈Q∗〉t)
+ η2

(
∂G

(〈Q∗〉t , q)
∂q

)
q=q0

q1(t)

+ O(η3). (53)

Therefore, we have

v1(t) = G
(〈Q∗〉t , ε 〈Q∗〉t) , (54)

v2(t) =

(
∂G

(〈Q∗〉t , q)
∂q

)
q=q0

q1(t). (55)

Next, we consider the higher-order correction of non-
adiabatic effects in q(t). Because the time dependency of
q(t) occurs only through 〈Q∗〉t, we represent q(t) = q̃(〈Q∗〉t)
for convenience. From (44), we have

d 〈Q∗〉t
dt

dq̃(〈Q∗〉t)
d 〈Q∗〉t = −q(t) + ε 〈Q∗〉t . (56)

By expanding this as,

(ηv1(t) + O(η2))
d

d 〈Q∗〉t (q̃0(〈Q∗〉t) + O(η))

= −(q0(t) + ηq1(t) + O(η2)) + ε 〈Q∗〉t , (57)

and by extracting the terms of the order of η, we have

v1(t)
dq̃0(〈Q∗〉t)

d 〈Q∗〉t = −q1(t). (58)

Thus, we have

q1(t) = −G
(〈Q∗〉t , ε 〈Q∗〉t) dq̃0(〈Q∗〉t)

d 〈Q∗〉t

= −εG
(〈Q∗〉t , ε 〈Q∗〉t) . (59)

We can summarize the results as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt
〈Q∗〉t = ηG

(〈Q∗〉t , ε 〈Q∗〉t)
+η2

(
∂G

(〈Q∗〉t , q)
∂q

)
q=q0

q1(t) + O(η3),

q(t) = ε 〈Q∗〉t − ηεG
(〈Q∗〉t , ε 〈Q∗〉t) + O(η2).

(60)

From (60), there is no term of the order of η0 in (dq(t)/dt).
This means the variation of 〈Q∗〉t and q(t) are not observed at
the time scale of T 0 = 1, but it does appear at the time scale
of T 1. This result corresponds to the quasi-static approach;
the system is in the equilibrium state when observed at the
time scale of T , and the state changes very slowly keeping
the equilibrium state. Therefore, by introducing the time
step unit of T , we define

λk := Λα(kT, T ), k = 1, 2, . . . , (61)

and the temporal evolution of (61) can be described by (12).

4.3 Temporal Evolution Equation of the Number of Arriv-
ing Customers Including Retries

In this subsection, we adopt the average number of cus-
tomers in the system as (18) and define the actual number of
customers arriving during [t − T, t−] as X(t, T )†. If T → ∞,
that is the limit of higher system speed, the observed in-
put rate is equivalent to the input rate X(t, T )/T = Λα(t; T ).
However, for a finite T , X(t, T )/T � Λα(t; T ), in general.
When we discuss the difference from the high speed limit
as shown in Fig. 8, we should describe X(t, T )/T rather than
Λα(t; T ).

The variation of X(t, T )/T occurs very slowly but can
be observed at the human perceivable scale. This observa-
tion is equivalent to fast forwarding a video.

Next we determine the details of the unknown func-
tion G(·, ·) in (60), by using model-specific characteristics
of large-scale M/M/1. The infinitesimal variation of X(t, T )
is defined as

dX(t, T ) := X(t + dt, T ) − X(t, T )

= X(t + dt, dt) − X(t − T + dt, dt). (62)

We assume that the timing of retry traffic input is fully ran-
domized and it follows a Poisson process. In addition, the
large-scale system targeted has a large value of primary traf-
fic rate λ0, and thus the Poisson distribution is sufficiently
close to the normal distribution. Therefore, the number of
arriving customers can be expressed, by using the Wiener
process, as

X(t + dt, dt) = Λα(t, T ) dt +
√
Λα(t, T ) dW(t)

†Of course, we can adopt (19) alternatively.
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=

(
λ0 +

ε X(t, T )/(μT )
1 − X(t, T )/(μT )

)
dt

+

√
λ0 +

ε X(t, T )/(μT )
1 − X(t, T )/(μT )

dW(t),

(63)

X(t − s + dt, dt) =
X(t, T )

T
dt +

√
X(t, T )

T
dW(t). (64)

Thus the infinitesimal variation of X(t; T ) is obtained as

dX(t, T ) =

(
λ0 − X(t, T )

T
+
ε X(t, T )/(μT )

1 − X(t, T )/(μT )

)
dt

+

√
λ0+

X(t, T )
T
+
ε X(t, T )/(μT )

1−X(t, T )/(μT )
dW(t).

(65)

In the form of Langevin equation, (65) can be expressed as

dX(t, T )
dt

=

(
λ0 − X(t, T )

T
+
ε X(t, T )/(μT )

1 − X(t, T )/(μT )

)

+

√
λ0+

X(t, T )
T
+
ε X(t, T )/(μT )

1−X(t, T )/(μT )
ξ(t),

(66)

where ξ(t) is the white Gaussian noise that satisfies E[ξ(t)] =
0 and E[ξ(t) ξ(s)] = δ(t − s), and ξ(t) obeys the standard
normal distribution. This result corresponds to (13) and we
can also express the result in the form of (14) as

∂

∂t
pT (x, t)

=
∂

∂x

(
λ0 − X(t, T )

T
+
ε X(t, T )/(μT )

1 − X(t, T )/(μT )

)
pT (x, t)

+
∂2

∂x2

√
λ0 +

X(t, T )
T

+
ε X(t, T )/(μT )

1 − X(t, T )/(μT )
pT (x, t),

(67)

where pT (x, t) is the probability density function of X(t, T ).
The validity of (65) and (67) was verified by comparison
against simulation results in [23].

5. Conclusions

In this paper, we have discussed the design of a network
architecture that adopts the approach of reproducing the sta-
bility and order of nature. Our guiding principle is hierarchy
with time scale dependency, and it includes the local-action
theory and the renormalization group. We demonstrated the
importance of the renormalization group in hierarchical de-
sign by using an example of interaction between customers
and a system. The form of the temporal evolution Eq. (67)
describes the phenomena of pT (x, t) observed at the hu-
man perceptible macro-scale, and effects from more finely-
granular structures reflecting state transition of the system

are reduced and represented as the value of the coefficient
of (67). This is an example of hierarchical structure shown
in Sect. 2.3. In addition, we clarified the physical interpreta-
tion of the quasi-static approach.
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