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The Reliability Performance of Wireless Sensor Networks
Configured by Power-Law and Other Forms of
Stochastic Node Placement

Mika ISHIZUKA†a) and Masaki AIDA†b), Members

SUMMARY Sensor nodes are prone to failure and have limited power
capacity, so the evaluation of fault tolerance and the creation of technology
for improved tolerance are among the most important issues for wireless
sensor networks. The placement of sensor nodes is also important, since
this affects the availability of nodes within sensing range of a target in a
given location and of routes to the base station. However, there has been
little research on the placement of sensor nodes. Furthermore, all research
to date has been based on deterministic node placement, which is not suit-
able when a great many sensor nodes are to be placed over a large area. In
such a situation, we require stochastic node placement, where the sensor-
positions are in accord with a probability density function. In this paper,
we examine how fault tolerance can be improved by stochastic node place-
ment that produces scale-free characteristics, that is, where the degree of
the nodes follows a power law.
key words: sensor network, node placement, fault tolerance, power law

1. Introduction

Recent advances in electronics, such as power-saving LSIs,
have led to the production of small sensors equipped with
communications capability. A network of such sensors will
enable information gathering over a wide area, so interest in
sensor networks is currently strong.

The development of ad hoc network technology is im-
portant for wireless-networked sensors, since the ad hoc ap-
proach will relieve the network implementor of explicit net-
work configuration. Furthermore, sensor nodes are prone to
failure and have limited power capacity, so the evaluation of
fault tolerance and the creation of technology for improved
tolerance are also major issues for sensor networks. As is
the case for ad hoc networks [1], [2], most research on fault
tolerance in sensor networks to date has been focused on
the power-saving mode of the MAC protocol [3]–[5] and
energy-efficient route selection [6]–[8].

Though sophisticated routing and use of the MAC layer
protocol will improve fault tolerance, the placement of sen-
sor nodes also strongly affects fault tolerance in a sensor
network.

However, little research into placement has been done.
In addition, all research to date has been based on deter-
ministic node placement [9]–[11], which requires that each
sensor node be placed at predetermined coordinates. This
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Fig. 1 Concept of deterministic node placement.

Fig. 2 Concept of stochastic node placement.

has the following shortcomings:

• a high cost of placement and
• luck of clarity regarding the effects of errors in sensor-

position on performance.

The alternative approach is stochastic node placement,
where the sensor-positions are determined by a probability
density function. Approximate positioning satisfies the den-
sity function, so the cost of placement is low. The concepts
of the two approaches to placement are shown in Figs. 1 and
2.

Considering the respective characteristics, stochastic
node placement is particularly effective when

• the region where sensor nodes are placed is large and
outdoors, and has conditions that make precise survey-
ing hard (for example, a big park, a forest, a place
where dangers exist), and
• the number of sensor nodes is large.

In order to show effectiveness of stochastic node placement,
we should show how to realize stochastic node placement,
though this paper focuses only on the evaluation of fault
tolerance for stochastic node placement. We consider any
stochastic node placement can be realized by scattering sen-
sor nodes from the air (see Fig. 2). The theoretical basis for
this consideration is briefly described in Sect. 2.2.

Note that this paper deals with fault tolerance against
both random failure and battery exhaustion, although most
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other studies to date have been based on evaluation of the
latter point alone. This is because we consider that fault tol-
erance against random failure is also important, since sensor
nodes are prone to failure (e.g. for environmental reasons
such as bad weather or because of mechanical trouble). In
addition, the evaluation of fault tolerance against random
failure is equivalent to evaluation of the effects of changes
to the number of sensor nodes. The evaluation of fault toler-
ance against random failure is thus a meaningful measure of
how effectively sensor nodes are placed by different meth-
ods of placement.

The topology of the Internet has been shown to have
scale-free characteristics; that is, the degree of the nodes
has been shown to follow a power law [12]. In addition, re-
cent research has shown that scale-free networks are highly
tolerant of random failure, since such networks have more
alternative routes [12]. Therefore, it is natural to expect that
we can realize a sensor network with high fault tolerance
by constructing the network so that the degree of its nodes
follows a power law around the base station.

Motivated by the above considerations, we are examin-
ing how fault tolerance can be improved by stochastic node
placement that produces scale-free characteristics. In this
paper, we start by proposing power-law placement, that is,
placement so that the degree of the nodes follows a power-
law. We then evaluate the relative fault tolerance of power-
law placement and the two most typical forms of stochas-
tic placement. Finally, we identify the optimal placement
among them.

The rest of this paper is organized as follows. As back-
ground material, Sect. 2 covers the communications model
and the three forms of stochastic placement. Section 3 de-
scribes the conditions used in simulation. Section 4 gives
the results of simulation. Section 5 covers the evaluation of
optimal placement. Finally, Sect. 6 is a summary.

2. Background

2.1 Communications Model

In this subsection, we use Fig. 3 in explaining how a sensor
network senses and transmits data. We consider the situation

Fig. 3 An example of the sensing and transmission of data.

where the precise location of the target is unknown but the
target is known to be in a certain region. Here, we assume
that the target is within region D. An example of an appli-
cation with such conditions is the monitoring of a vehicle in
a forest.

Each sensor node has a specific sensing range. Each
sensor node for which a target is within the sensing range
sends sensed information to the base station during each pe-
riod T . In Fig. 3, sensors A and B are the only sensors capa-
ble of sensing the target.

A sensor node can transmit data to or receive data from
other sensor nodes within its radio-transmission range. The
minimum-hop strategy is used to select routes to the base
station. If an intermediate node on the current route breaks
down, an alternative route is selected for the remaining in-
formation.

Note that we refer to the sensing of a target as success-
ful when one or more sensor nodes is within sensing range
of the target, and at least one of these nodes has a route to
the base station.

A sensor node consumes battery energy in transmitting
(Et J/bit) and receiving bits (Er J/bit). When a sensor node
used up its battery energy, all functions of the node stop.

2.2 Stochastic Node Placement

In stochastic node placement, sensor-positions x ∈ R2 are
defined by a probability density function (p.d.f.), f (x)†.

In this paper, we evaluate the fault tolerance for three
types of stochastic placement. Two are the most typical
types, i.e. simple diffusion and constant placement, while
the other is our proposal, power-law placement. In this sec-
tion, we define the p.d.f. of and briefly describe the charac-
teristics of each approach to placement.

We assume that all sensor nodes are placed in region
D, which is a circle with radius R. Under this assumption,∫

D
f (x)dx = 1 is required. We set the base station at the

center of this circle, and treat this as the origin.

Simple diffusion The simplest way to distribute sensor-
nodes is to scatter them from the air above the base
station.
Suppose that the weight and shape of the sensor nodes
are such that air drag has a strong effect on the way
the sensor nodes fall. If air current are weak enough,
placement of the sensor nodes will be randomized, so
that it follows a diffusion equation. We call this simple
diffusion.
Since the solution of a diffusion equation on a two-
dimensional boundary is a two-dimensional normal
distribution, the p.d.f. of the sensor-positions is

f (x) =
C

2πσ2
h0(‖x‖;σ), (1a)

†The probability of a sensor being within region A = {x11 ≤
X1 ≤ x12, x21 ≤ X2 ≤ x22} can be written in terms of the
p.d.f. as follows: P{x11 ≤ X1 ≤ x12, x21 ≤ X2 ≤ x22} =∫ x22

x21

∫ x12

x11
f (x1, x2)dx1dx2.
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where

h0(r, σ)
�
= exp

(
− r2

2σ2

)
, and (1b)

C =
1

1 − exp
(
−R2

2

) , (1c)

0 ≤ ‖x‖ ≤ R.

In (1), σ2 is the variance of the distribution. The vari-
ance is determined by several factors (i.e. the shape and
weight of the sensors, and the height from which they
are released).
Note that sensor nodes scattered from the air are gov-
erned by another formula when air currents are strong.
However, we do not take such variation into account,
since details on techniques for the scattering of sensor
nodes are beyond the scope of this paper.
The two-dimensional normal distribution is known as a
radial basis function. Daubechies [13] has shown that
any functions F(x) can be expressed in terms of one or
more radial basis functions, as follows:

F(x) =
∫

p(c, σ)h(x; c, σ)dcdσ, (2a)

where

h(x; c, σ) = exp

(
−‖x − c‖

2σ2

)
. (2b)

In (2), p(c, σ) are weights of each normal distribution,
and c and σ2 are center and variance of the respective
normal distributions.
When a radial basis function is used to approximate
a given function, the integral in (2) is replaced by a
superposition of h(x; ci, σi) as follows:

F(x) ≈
M∑

i=1

pi(ci, σi)h(x; ci, σi), (3a)

where

h(x; ci, σi) = exp

−‖x − ci‖
2σ2

i

 . (3b)

Also in (3), pi(ci, σi) are weights of each normal dis-
tribution, and ci and σ2

i are center and variance of the
respective normal distributions. In addition, M is the
number of functions being superposed. As for the ac-
curacy of (3), the upper bound of the error has been
discussed [14].
Repeated simple diffusion with different centers and
variances can thus lead to any form of stochastic
sensor-placement. In this sense, simple diffusion is a
fundamental distribution in terms of realizing stochas-
tic placement.

Constant placement In much work on sensor networks
[5]–[7], [15], placement for uniform probability den-
sity of sensor nodes has been assumed. We call this

constant placement. In this case, the p.d.f. of sensor-
position is as follows:

f (x) =
1
|D| , 0 ≤ ‖x‖ ≤ R. (4)

In (4), |D| means the area of region D.
Power-law placement (our proposal) The p.d.f. of the

sensor-positions in polar-coordinates fp(r, θ) is

fp(r, θ) =
α + 1
2πR

( r
R

)α
,

0 ≤ r ≤ R, 0 ≤ θ < 2π,−1 < α < 1. (5)

Power-law placement is characterized by the follow-
ing two features. Firstly, the density of sensor nodes
is higher near the base station. Actually, ρ(r1, θ1), the
density of sensor nodes at position (r1, θ1), is as fol-
lows.

ρ(r1, θ1) = lim
δr→0

lim
δθ→0

∫ r1+δr

r1

∫ θ1+δθ
θ1

f (r, θ)dθdr∫ r1+δr

r1

∫ θ1+δθ
θ1

dθdr

=
α + 1

2π

rα−1
1

Rα+1
, −2 < α − 1 < 0. (6)

Secondly, the degree of the nodes follows a power law.
Since a sensor node can transmit data to or receive data
from other sensor nodes within the radio-transmission
range, the degree of a node may be expressed as the
p.d.f. of the number of sensor nodes within radio-
transmission range. When the radius of the region D
is much larger than the radio-transmission range, the
asymptotic behavior of the degree of the nodes is as
follows:

g(x) =
d

dx

∫ ∫
ρ(r1,θ1)<x

f (r, θ)drdθ

=
d

dx

∫ 2π

0

∫ R

1
2πRx

α + 1
2πR

(
r
R

)αdrdθ

∝ x
2
α−1 , 2πR2 < x,−1 < α < 1.

(7)

From (7), g(x) is proportional to x
2
α−1 , so the degree of

the nodes follows a power law.
Here, we briefly give an example of the realization
of power-law placement, although we leave details of
such realization for further study. As was shown in (3),
repeated simple diffusion can be used to produce any
stochastic placement. To set masa ci, (i = 1, . . . , M)
to the same position as the base station is one of the
simplest parameter settings for (3). In this case, the
p.d.f. of placement, f (x), is approximated as follows:

f (x) ≈
M∑

i=1

pi

2πσ2
i

h0(‖x‖;σi). (8)

One way to realize (8) is to scatter M types of sensor
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(a) (b) (c)

(d) (e)

Fig. 4 P.d.f. plots for various placements.

(a) (b) (c)

(d) (e)

Fig. 5 Examples of various placements.

nodes with different weights (for different σi) simulta-
neously in the air above the base station. The cost of
preparing “M” types of sensors with different weights
will be low, even if the value of M is great. This is be-
cause the M types of sensors can be prepared by merely
attaching weights to each sensor. Details on determin-
ing the values of M, pi, and σi are not given in this
paper, because the focus of this paper is the evaluation
of fault tolerance for each placement.

The characteristics of various placements are shown by plots
of p.d.f. in Fig. 4 and by examples of placement in Fig. 5.
The base station is the origin and region D is a circle with a
radius of 500 m, centered on the base station. Variance for
simple diffusion is set so that 99% of the sensors are placed
within region D. In the other placements, we suppose that
all sensor nodes are placed within region D. The number of
sensor nodes in Fig. 5 is 250. The density of simple diffu-
sion gradually decreases with distance from the base station
and is lowest around the border of region D. The power-law

placements also have greatest density near the base station,
and this rapidly decreases with distance and then stays al-
most constant. As α increases, density decreases near the
base station and increases around the border of region D.

3. Simulation Settings

3.1 Setting of Targets and Sensor Nodes

Targets were randomly generated within region D, a circle
with a radius of 500 m and centered on the base station, cov-
ering about seventeen times the area of the Tokyo Dome.
We consider that region D is large enough to benefit from
the efficiency of stochastic node placement.

In evaluating tolerance of node failures due to battery
exhaustion, we set up the target-sensing period, T , to fol-
low an exponential distribution with an average of 72 min.
A new target was generated TI after the end of the target-
sensing period for the previous target. We set TI to follow
an exponential distribution with an average of 250 sec.
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The number of sensor nodes, N, was 250. We set the
sensing range to 60 m and the radio-transmission range to
100 m.

The data transmission rate was 1.1 kbps, low enough to
avoid collisions. Actually, the data transmission rate is de-
termined by frequency of sensing and by volume of sensory
information. When a certain delay is allowed by an applica-
tion, frequency of sensing is not so large, since it is reason-
able that a sensing node send several times of sensory infor-
mation collectively. As for volume of sensory information,
it is considered to be small. Considering situation where
a certain delay is allowed by an application and volume of
sensory information is small, we set interval of transmission
is 18 min and volume of data to 150 kbytes. Note that, when
data transmission rate is high enough that collisions are pos-
sible, the collisions affect the rate of battery consumption.
In practice, however, we consider these collisions can be
avoided by using techniques such as data aggregation [16].
Therefore, our results can apply to the situation where some
techniques to avoid collisions are used, though details about
such techniques will be considered in further study.

Energy consumption was 3.3e-07 J/bit for transmission
and 1.9e-07 J/bit for reception [15]. The initial energy of
each sensor node was 20 J.

As was described in Sect. 2.1, target is successfully
sensed when the following two conditions are met.

[Condition 1] One or more sensor nodes is within the sens-
ing range of the target, and

[Condition 2] at least one of these nodes has a route to the
base station.

Given these simple conditions, simulation parameters need
not be changed to investigate the robustness of networks in
each placement against failures of nodes. However, the re-
sults of quantitative analysis may be affected by the number
of sensor nodes in region D and the ratio of sensing range to
radio-transmission range.

Therefore, we evaluated two additional cases in deter-
mining the best placement (Sect. 5):

• N is changed to 400, and
• N is changed to 400 and sensing range is changed to

30 m.

We evaluated seven forms of power law placement, i.e.
α ∈ {−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5}. In each case, all sen-
sor nodes were placed in region D. This was also the case for
constant placement. In the case of simple diffusion, the vari-
ance was set so that 99% of sensor nodes would be placed
within region D. In evaluating individual items (Sect. 4),
sets of five arrangements produced by constant placement,
simple diffusion, and power-law placement with three con-
trol parameters were evaluated.

3.2 Simulation Scenario

In this subsection, we describe how we evaluated fault tol-
erance. We considered scenarios where the number of live

sensor nodes gradually decreases because of random errors
or battery exhaustion.

We adopted the “virtual sensing-success ratio” as the
performance metric. This refers to the probability that a
given target generated in region D is successfully sensed.
This metric is used to evaluate fault tolerance (that is,
sensing-success ratio) at arbitrary points in time.

In evaluating tolerance against random failure, we eval-
uated the virtual sensing-success ratio for various values of
rb, the proportion of broken nodes. We increased rb from 0
with a step size of 0.1. At each value of rb, the broken nodes
are randomly selected.

In evaluating tolerance against battery exhaustion, we
considered a situation where the number of nodes that have
used up their battery energy increases with the number
of targets. We evaluated the relationship between virtual
sensing-success ratio and the number of targets. We also
evaluated the total numbers of bits received as a measure of
actual (simulated) performance.

4. Results of Simulation

4.1 Tolerance of Random Failure

In the discussion below, ‘sensor node’ and ‘sensor’ refer to
functioning sensor nodes, except in reference to the original
distributions. ‘The target’ refers to each current target in the
sequence.

Results for virtual sensing-success ratio are given in
Figs. 6 and 7. In order to examine the results in detail, we
plot the probability that no sensor is within sensing range of

Fig. 6 Virtual sensing-success ratios. (α = −0.5,−0.3,−0.1)

Fig. 7 Virtual sensing-success ratios. (α = 0, 0.1, 0.3, 0.5)
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Fig. 8 Probability of having no sensors within range of the target. (α =
−0.5,−0.3,−0.1)

Fig. 9 Probability of having no sensors within range of the target. (α =
0, 0.1, 0.3, 0.5)

Fig. 10 Probability that no sensor node within sensing range of the target
has a route to the base station. (α = −0.5,−0.3,−0.1)

Fig. 11 Probability that no sensor node within sensing range of the target
has a route to the base station. (α = 0, 0.1, 0.3, 0.5)

the target in Figs. 8 and 9. In addition, the probability that
no sensor node within sensing range of the target has a route
to the base station in plotted in Figs. 10 and 11 (we call this

as the probability of having no route to the base station).
The highest virtual sensing-success ratio is for constant

placement when the proportion of broken nodes, rb, is low.
This is because the probability of having no sensor within
sensing range of the target is lowest for constant placement
(see Figs. 8 and 9). It is obvious that uniform density of
sensor nodes is desirable in terms of keeping this probabil-
ity high. However, the ratio for constant placement drops
rapidly after rb reaches 0.4 and this placement produce the
worst result in the region of high rb. This is because this
placement produces the highest probability that there are no
routes to the base station when rb is high (see Figs. 10 and
11). In order to keep the probability that a route to the base
station exists high despite random failures, a higher density
of sensor nodes near the base station is desirable. This is be-
cause sensor nodes near the base station have a higher prob-
ability of being used as relay nodes. Since constant place-
ment produces the lowest density of sensor nodes near the
base station, the sensing-success ratio for high rb is lowest.

Simple diffusion has the lowest or second lowest vir-
tual sensing-success ratio when rb is low, but has the highest
ratio when rb is high. The low sensing-success ratio for sim-
ple diffusion in the region of small rb is because the prob-
ability that no sensor is within sensing range of the target
is high (see Figs. 8 and 9). This is because simple diffusion
produces a distribution with relatively fewer nodes around
the border of region D (see Fig. 5). The converse of this
characteristic is the relatively higher sensing-success ratio
in the region of high rb. That is, the probability of having
no route to the base station is smaller in the region of high
rb (see Figs. 10 and 11) because there are more sensors near
the base station.

The virtual sensing-success ratio for the power-law
placements increases with α in the region of small rb. This
is mainly because the probability of having no sensor within
sensing range of the target decreases with α increases (see
Figs. 8 and 9). This decrease in the probability of having
no sensor within sensing range of the target is because the
density of sensor nodes becomes increasingly uniform as
α increases. The differences between the virtual sensing-
success ratios for different values of α decrease as rb in-
creases. This is because the probability of having no route
to the base station increases with α in the region of high rb,
while the probability that no sensor is within sensing range
of the target decreases as α increases (see Figs. 8–11). The
increase is because the density of sensor nodes near the base
station decreases with α.

From another point of view, the evaluation of sensing
success-ratio when random failure occurs is equivalent to
the evaluation of sensing success-ratio when the number
of sensor nodes in region D is changed, since the x-axis
in Figs. 6 and 7 refrects to the number of live nodes, i.e.
N(1 − rb). We now look at the results in Figs. 6 and 7 from
this viewpoint.

The virtual sensing success-ratio for constant place-
ment does not increase greatly when the number of oper-
ating nodes increases in the right most region of Figs. 6 and
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7. That is, with this distribution, newly added nodes are not
effectively placed when the number of sensor nodes is small.

The virtual sensing success-ratio for simple diffusion
approaches saturation first and stays relatively low as the
number of nodes increases in the left sides of these graphs.
In this case, newly added nodes are not effectively placed
when the number of sensor nodes is large.

The virtual sensing success-ratio for power-law place-
ment rises linearly with the number of nodes in the right-side
and middle regions of these figures. When α < 0, this ra-
tio continues to rise linearly in the left-most region of these
figures, while the ratios for α ≥ 0 approach relatively high
saturation values in this region. Newly added nodes are thus
always effectively placed, regardless of the number of sen-
sor nodes.

4.2 Tolerance of Battery Exhaustion

Relationships between the number of targets that have ap-
peared and the virtual sensing-success ratio are shown in
Figs. 12 and 13. To examine these results in more detail,
we plot the probability that no sensor is within range of the
current target in Figs. 14 and 15, and the probability that no
sensor node within sensing range of the target has a route to
the base station (that is, the probability of having no route to
the base station) in Figs. 16 and 17.

Fig. 12 Virtual sensing-success ratio vs. no. of targets that have
appeared. (α = −0.5,−0.3,−0.1)

Fig. 13 Virtual sensing-success ratio vs. no. of targets that have
appeared. (α = 0, 0.1, 0.3, 0.5)

Fig. 14 Probability of having no sensor within range of the target. (α =
−0.5,−0.3,−0.1)

Fig. 15 Probability of having no sensor within range of the targets. (α =
0, 0.1, 0.3, 0.5)

Fig. 16 Probability that no sensor node within sensing range of the target
has a route to the base station. (α = −0.5,−0.3,−0.1)

Fig. 17 Probability that no sensor node within sensing range of the target
has a route to the base station. (α = 0, 0.1, 0.3, 0.5)
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The highest virtual sensing-success ratio over simu-
lated time is for constant placement highest when very few
targets have appeared. However, the respective plots drop
rapidly and are the first to approach 0 (Figs. 12 and 13).
This indicates that constant placement is also the weakest
approach in terms of failure through battery exhaustion.

While simple diffusion has the lowest ratio when rel-
atively few targets have appeared, the ratios drop and ap-
proach zero much more strongly than those for constant
placement.

The sensing-success ratios for power-law placement
with α ≤ 0 are almost equal to and generally greater than
those for simple diffusion across the whole range. When rel-
atively few targets have appeared in these cases, the virtual
sensing-success ratios decrease with α. On the other hand,
the period over which the virtual sensing-success ratio stays
at a reasonable value becomes longer as α decreases.

These results can be explained as follows. Wile the
probability of having no sensors within range of the tar-
get determines the virtual sensing-success ratio when rel-
atively few targets have appeared, the probability of hav-
ing no routes to the base station becomes dominant when
relatively many targets have appeared. In a similar way to
tolerance of random failure, there is a trade-off between the
probabilities of having no sensor within sensing range of the
targets and of having no route to the base station. That is,
uniform placement of the sensor nodes maximizes the for-
mer probability but placement with a high density near the
base station is desirable in terms of raising the latter proba-
bility.

From these observations, we can say that placement for
a uniform density of sensor nodes shows the highest virtual
sensing success-ratio when the number of targets is small,
while placement for a higher density near the base station
keeps the virtual sensing-success ratio at reasonable values
over longer periods.

Unlike the characteristics of tolerance of random fail-
ure, however, rapid decreases in the virtual sensing-success
ratio are seen with most placements. This is because of the
rapid increase in the probability of having no route to the
base station (Figs. 16 and 17) and the almost constant prob-
ability of having no sensor within sensing range of the target
(Figs. 14 and 15).

The mechanism behind the rapid increase is as follows.
Since sensor nodes near the base station are more likely to
be used as relay nodes, their batteries are more rapidly used
up. Once some sensor nodes near the base station have used
up their batteries, the remaining sensor nodes near the base
station are more likely to be used as relay nodes, this situa-
tion accelerates the consumption of battery energy by these
sensor nodes. Consequently, as the number of targets (sim-
ulated time) increases, the density of sensor nodes near the
base station more rapidly decreases, although this effect is
diminished with distance from the base station. This ex-
plains the rapid increase in the probability of having no route
to the base station in Figs. 16 and 17.

Considering this acceleration of battery consumption,

Fig. 18 Total number of received bits.

we conclude that the density of sensor nodes near the base
station has a stronger effect on tolerance of battery exhaus-
tion than on tolerance of random failure.

Finally, the total number of bits actually received by
the base station in the above situation is plotted in Fig. 18.
Fewer bits are received with constant placement and sim-
ple diffusion than with power-law placement when −0.3 ≤
α ≤ 0. In the case of constant placement, a greater prob-
ability that there is no route to the base station reduces the
cumulative number of bits received. In the case of simple
diffusion, a greater probability of having no sensor within
range of targets has a similar but weaker effect. In the case
of power-law placement, intermediate values of α are desir-
able in terms of keeping the total number of bits received
high, because a smaller value of α raises the probability of
having no sensor within range of targets and a larger value
of α raises the probability of having no route to the base sta-
tion. Since these two probabilities are relatively balanced
for power-law placements in the range −0.3 ≤ α ≤ 0, rela-
tively higher total numbers of bits are received in this range
of Fig. 18.

5. Optimization of Power Law Placement

The simulation-based results in Sect. 4 showed that fault tol-
erance becomes high when the probabilities of having sen-
sor nodes within range of the targets and of having alterna-
tive routes to the base station are both high. Since the former
more strongly affects tolerance of random failure while the
latter more strongly affects tolerance of battery exhaustion,
the most desirable placement differs with the mix of fail-
ure types. However, the results of simulation also suggested
that we can balance tolerance of the two types of failure by
selecting power-law placement with an appropriate value of
α. We thus briefly investigate the optimization of power-law
placement in this section.

To optimize power-law placement, we need to express
a performance metric for each type of failure as a function of
α. For tolerance of random failure, we use the expectation of
the virtual sensing-success ratio, and for tolerance of battery
exhaustion, we use the total number of received bits.

A value of α that maximizes both is most desirable.
However, each metric is likely to be maximized by different
values of α. We thus suggest the value of α that maximizes
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Fig. 19 Plot of S (α) Cr(α).

the product of the two metrics as a suitable optimal value.
We do this with a limited range of α as follows:

max
α∈{−0.5,−0.3,−0.1,0,0.1,0.3,0.5}

S (α) Cr(α) (9a)

where S (α) =
N∑

n=0

S nP[Nb = n]. (9b)

The function S (α) in (9a) is the expectation of the virtual
sensing-success ratio when random failure occurs, and is
calculated by using (9b). Notation in (9b) is defined as fol-
lows:

• N: number of sensor nodes.
• S n: virtual sensing-success ratio when the number of

broken nodes is n (that is, the results in Figs. 6 and 7).
• Nb: the number of broken nodes.

The Cr(α) in (9a) is defined as the total number of received
bits when failure through battery exhaustion is occurring
(that is, the result in Fig. 18).

In (9a), S (α) is the expectation of the probability that
sensing is successful and Cr(α) is proportional to the prob-
ability that data is successfully received, which means both
metrics do not exceed 1. Therefore, α that makes one met-
ric too large cannot be chosen as the optimal value, even
though product of S (α) and Cr(α) is chosen as an objective
function.

Suppose that the process of sensors breaking down
follows a Bernoulli distribution and that the probability of
breakdown, pb, is 0.001. Under this condition, P[Nb = n] in
(9b) is calculated by NCn pN

b (1 − pb)N−n.
We plot S (α) Cr(α) in Fig. 19. In this figure, S (α) Cr(α)

is maximized when α = −0.1.
As was mentioned in 3.1, the number of sensor nodes

N and the ratio of sensing range to radio transmission range
may affect the optimal value of α. We thus evaluate two
additional cases:

• N = 400 and sensing range is not changed (that is,
remains 60 m), and
• N = 400 and sensing range is changed to 30 m.

The plots of S (α)Cr(α) for these cases are shown in
Figs. 20 and 21. From these figures, we can confirm that the
optimal value of α is still −0.1.

Fig. 20 Plot of S (α)Cr(α). (N = 400)

Fig. 21 Plot of S (α)Cr(α). (N = 400, sensing range = 30 m)

6. Conclusion

In this paper, we have investigated how forms of stochastic
node placement affect the fault tolerance of a sensor net-
work.

To increase tolerance of failure, we must raise the prob-
ability of having sensor nodes within sensing range of each
target, and of at least one of these nodes having routes to
the base station. However, neither of the two most typical
forms of stochastic placement, simple diffusion and constant
placement, keeps both probabilities high. As a result, both
have poor fault tolerance. We have shown that power-law
placement, the form proposed in this paper, can raise fault
tolerance with an appropriately selected control parameter.
In addition, we have shown that power-law placement has
superior effectiveness because the sensing-success ratio is
almost linearly proportional to the number of nodes.

While we have not proven that power-law placement is
the optimal form of stochastic placement, our results clearly
indicate that tolerance of both random failures and battery
exhaustion can be raised by improving the placement of sen-
sor nodes. Power-law placement with a well-tuned control
parameter constitutes good placement.

In further study, we plan to investigate the realization
of power-law placement as the superposition of simple dif-
fusion placements in detail.
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