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Stability Analysis for Global Performance of Flow Control

in High-Speed Networks Based on Statistical Physics

Masaki AIDA† and Kenji HORIKAWA††, Members

SUMMARY This paper focuses on flow control in high-speed
and large-scale networks. Each node in the network handles its lo-
cal traffic flow only on the basis of the information it knows. It is
preferable, however, that the decision making of each node leads
to high performance of the whole network. To this end, the rela-
tionship between local decision making and global performance of
flow control is the essential object. We propose phenomenologi-
cal models of flow control of high-speed and large-scale networks,
and investigate the stability of these models.
key words: high speed network, ow control, autonomous dis-

tributed system, throughput, Fokker-Planck equation

1. Introduction

This paper investigates performance and stability of
flow control schemes in high-speed and large-scale net-
works. In order to clarify our motivation, this section
states the characteristics of high-speed and large-scale
networks and states issues concerning the frameworks
of network control associated with them.

1.1 Issues in High-Speed Networks

In a high-speed network, propagation delay becomes a
dominant factor in the transmission delay. This is be-
cause light speed is a non-scaling factor, and is the same
for high-speed networks. Therefore, at a given time, a
large amount of data is being propagated on links in
the network (Fig. 1). The amount of this data is char-
acterized by delay-bandwidth product, that is, the prop-
agation distance times transmission rate. Therefore, in
high-speed and/or long-distance transmission, there is
a larger amount of data on links than in nodes. Figure 2
shows an example of how much data can be on a link.
Let us consider the situation involving data transmis-
sion between two nodes, with a distance between them
of 1 km and a link speed of 1Mbps. If transmission
speed increases to 1Gbps, the data amount on the link
is equivalent to 103 km on a 1-Mbps link. In addition,
if its transmission speed increases to 1Tbps, the data
amount is equivalent to 106 km on a 1-Mbps link. This
distance is about 2.5 times the distance between the
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earth and the moon.
This means that it is impossible to exert time-

sensitive control based on collecting global informa-
tion about the network. So, the frameworks of time-
sensitive control, in a large-scale and high-speed net-
work, are inevitably autonomous distributed systems.

1.2 Issues in Large-Scale Networks

Let us consider an approach analyzing a large-scale net-
work. If we model it based on traditional queueing net-
work theory, a lot of degrees of freedom of the network
system are included in the model. For example, in or-
der to derive the global performance from the state of
each node, it is necessary to obtain the joint probability
distribution of the states of all nodes in the network. If
the distribution is easily determined, there is no prob-
lem. However, it is actually impossible to obtain the
distribution of a lot of nodes including their correlated

Fig. 1 Large delay-bandwidth product.

Fig. 2 An example of large delay-bandwidth product.
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effects.
When all nodes are mutually independent, as in

cases of BCMP theorem [2], the probability distribu-
tion is obtained in a simple product-form. These cases,
however, are strongly restricted situations. Conversely,
if we assume the independence among nodes, the in-
teresting behavior of global performance can not be
described. Thus, the approach directly describing all
degrees of freedom is difficult to handle.

In general, when a system is in equilibrium, the
system is characterized by a few order parameters. The
kind of these order parameters is much smaller than
the degrees of freedom of the whole system. Therefore
we adopt an approach which directly describes the be-
havior of a global performance as an order parameter.
Then the effect of the behavior of each node is reflected
as fluctuation of the global performance.

1.3 Framework of Flow Control in High-Speed and
Large-Scale Networks

This paper focuses on flow control in networks in which
nodes handle their local traffic flow themselves based
only on the information they know. It is, of course,
preferable that the decision making of each node leads
to high performance of the whole network. In flow con-
trol, we adopt the whole throughput of a network as a
global performance measure.

To achieve such coherent flow control, the rela-
tionship between the local decision and the global per-
formance of flow control is the essential object. We
propose phenomenological models of flow control for a
large-scale and high-speed network, and investigate the
stability of these models. These models assume that
the whole throughput of a network has a Markovian
property, and they use the technique of Ω-expansion of
the master equation. Based on these models, we have
tried to connect the whole throughput and its fluctua-
tion caused by the local decision making of each node.

2. Background

2.1 Methods in Statistical Physics and Thermody-
namics

Data in a network is in one of the following two states:
in a node, or on a link. We define the throughput of
a network at time t as how much data is being propa-
gated on the network [3], [6]. So, the throughput of a
network is the amount of data on the links at time t,
and is denoted by XE(t). Alternately, the average link
utilization of the whole network, that is, the normal-
ized value of the amount of data on the links, may also
be thought of as the throughput of the network. We
denote it by XI(t).

These two quantities are categorized from the ther-
modynamical point of view as follows:

• Extensive Quantity
Consider an equilibrium system made by combin-
ing n identical equilibrium subsystems. When
the thermodynamical quantity of the large system
equals n times the quantity of one small subsys-
tem, the quantity is called an extensive quantity.
XE(t) is a quantity of this type.

• Intensive Quantity
In the same situation, when the thermodynamical
quantity of the large system equals the quantity
of one small subsystem, the quantity is called an
intensive quantity. XI(t) is a quantity of this type.

These quantities are homogeneous functions of degree
Ω1 and Ω0, respectively, where Ω is system size and,
in this case, denotes the maximum amount of data on
links in the whole network.

The behavior of throughput XE is determined by
the behaviors of all nodes in the network. However,
when the network size Ω is large, there are many nodes
in the network and it is almost impossible to describe
their behavior, including the interactions among all
nodes. Therefore, we assume that the influence of the
behavior of a node is reflected in a small fluctuation of
XE. So we regard XE as a random variable.

We define the probability density function PE(x, t)
such that the probability of the throughputXE(t) being
in x ≤ XE(t) < x + dx at time t is PE(x, t) dx. We
assume XE(t) as a Markovian random variable, and
describe the temporal evolution of PE(x, t) using the
master equation:

∂

∂t
PE(x, t) =

∫
W (x− r, r, t)PE(x− r, t) dr

−
∫
W (x, r, t)PE(x, t) dr, (1)

where W (x, r, t) denotes the transition rate from
XE(t) = x to x + r at time t. Our interest is in the
situation for large networks, so we assume the follow-
ing conditions:

Ω� 1, E(XE)� 1. (2)

2.2 Ω-Expansion of the Master Equation

Let us define moments of W (x, r, t) with respect to
transition r as

Cn(x, t) :=
∫
rnW (x, r, t) dr. (3)

If all moments Cn(x, t) exist for all n, master equation
(1) is written as

∂

∂t
PE(x, t) =

∞∑
n=1

(−1)n
n!

(
∂

∂x

)n

Cn(x, t)PE(x, t).

(4)
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This is called Kramers-Moyal expansion [4], [5].
In order to describe the relationship between the

temporal evolution of XE and its fluctuation, we use
Ω-expansion (size expansion).

When the network size Ω is very large and XE is
near equilibrium, we assume

E(XE) = O(Ω), V ar[XE] = O(Ω), (5)

where V ar[·] denotes the variance. Here, we introduce
normalized throughput XI (intensive quantity) as

XI(t) :=
XE(t)
Ω

, (6)

which is independent of the network size. The variance
of XI is then expressed as

V ar[XI] = ε2 V ar[XE], (7)

where ε := Ω−1. We define the probability that XI(t)
is in x ≤ XI(t) < x+ dx at time t as PI(x, t) dx. From
the normalization condition of PI(x, t), we obtain

PI(x, t) = ΩPE(Ωx, t), (8)

under scaling law (6). The transition rate, w(x, r, t),
from XI = x to x+ r at time t is

w(x, r, t) = εW (Ωx, r, t). (9)

The physical meaning of this scaling is that the transi-
tion r in extensive quantity XE has Ω times the oppor-
tunity to occur as the same transition in normalized
intensive quantity XI. Using these scaling rules, we
rewrite master equation (1) in the following Kramers-
Moyal expansion form:

∂

∂t
PI(x, t) =

∞∑
n=1

(−1)n
n!

εn−1

×
(
∂

∂x

)n

cn(x, t)PI(x, t), (10)

where cn(x, t) denotes the n-th moment of w(x, r, t)
with respect to transition r, as

cn(x, t) =
∫
rn w(x, r, t) dr. (11)

Equation (10) is called the Ω-expansion [4], [5] of master
equation (1).

2.3 Cumulant Expansion and Temporal Evolution of
Cumulants

We define the characteristic function of PI(x, t) as

Q(ξ, t) :=
∫
PI(x, t) eiξx dx, (12)

and the characteristic function of the transition rate as

ω(ξ, r, t) :=
∫
w(x, r, t) eiξx dx. (13)

The master equation of Q(ξ, t) is then expressed as

∂

∂t
Q(ξ, t) =

1
2π

∫
dr

∫
dη

∫ r

0

ds iξ eiεξs

×Q(ξ − η, t)ω(η, r, t). (14)

We assume that the solution Q(ξ, t) of master
equation (14) has the following form:

Q(ξ, t) = exp q(ξ, t) = exp

[ ∞∑
n=1

(iξ)n

n!
qn(t)

]
. (15)

Here, qn(t) is the n-th cumulant of XI.
From Eq. (14), we can derive the temporal evolu-

tion of cumulants qn(t)s. q1(t) and q2(t) respectively
correspond to the average and the variance of PI(x, t).
Expanding q1(t) up to O(ε) with respect to the power
of ε, we define y(t), u(t) as

q1(t) = y(t) + ε u(t) +O(ε2). (16)

Similarly, expanding q2(t) up to O(ε) with respect to
the power of ε, we define v(t) as

q2(t) = ε v(t) +O(ε2). (17)

The temporal evolution equations of y(t), v(t), u(t) are,
as shown in [5], expressed as

∂y(t)
∂t

= c1(y, t), (18)

∂v(t)
∂t

= 2 c′1(y, t) v(t) + c2(y, t), (19)

∂u(t)
∂t

= c′1(y, t)u(t) +
1
2
c′′1(y, t) v(t), (20)

where c′n and c′′n denote the first and second derivatives,
respectively, of cn with respect to y. Note that the
temporal evolution of the cumulants is determined by
the moments of the transition rate.

3. Flow Control Schemes and Simulation Re-
sults

3.1 Network and Node Models

Our network model has simple lattice topology and a
torus boundary, that is, a closed Manhattan Street net-
work (Fig. 3(a)). There are 400 nodes in the network
and they have a 20×20 lattice configuration. All nodes
have two incoming links and two outgoing ones. Two
links of a node correspond to the vertical and horizontal
directions. For simplicity, we assume an Asynchronous
Transfer Mode (ATM) network in which the data unit,
the cell, has a fixed length in bits.

All nodes have a switching function such that the
incoming cells are switched into the vertical or horizon-
tal outgoing direction with the probability 1/2 based
on a Bernoulli trial. Switched cells are stored in the
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Fig. 3 Network and node models.

output buffer of their direction (Fig. 3(b)).
All nodes are capable of receiving and sending rate

signals. When a node receives a rate signal from down-
stream, the node adjusts its transmission rate to down-
stream according to the rate signal. In addition, all
nodes can signal the allowed transmission rate to the
upstream nodes by using a rate signal. Each node au-
tonomously decides how much rate should be specified
by using a rate signal. Different rate control schemes
are applied in accordance with the different processes
used to determine the specified rate.

Here, we state supplements of characteristics in the
network model.

• Network topology has high symmetry
Although the homogeneous topology of the net-
work model may look un-realistic, the reason is as
follows. If we can identify the bottleneck points,
in performance, in the network model, then we can
focus on the part of the network model including
the bottleneck points. However, if the symmetry
of the network topology is high and the bottleneck
points in performance are not explicitly identified,
the above model focusing on part of the network
can not be applied. Actually, any parts can be bot-
tlenecks with the same probability. Let us consider
the situation when accidental congestion occurs at
a certain node. Then we are interested in the be-
havior of the local congestion, whether

– it grows and causes deterioration of the
whole network performance through interac-
tion among nodes, or

– it remains a local phenomenon and diminishes
with time.

In order to evaluate the behavior without other
complicated effects, we adopt the above simple net-
work model. This is the reason why we do not take
hierarchical network models (or, for example, addi-
tional flow control between terminals such as TCP)
into consideration.

• All nodes obey the same rule
There are no special nodes such as one to control
the whole network. More specifically, such nodes
can not exist under the high-speed network envi-

ronment. We therefore give all nodes the same
rule. Note that although the rule is the same, each
node is in a different state at some time t and thus
the behavior of each node at t is different. We are
interested in the behavior of global performance
under the situation that

– all nodes behave autonomously by the same
rule, and

– there is no special node controlling the whole
network.

• Network size and boundary condition
There is no essential reason that the number of
nodes is 400 with a torus boundary. It is only nec-
essary that there be as many nodes as possible, and
the nodes on the network boundary behave under
the same rule and conditions as the other ordinary
nodes. The reason for a closed network is that the
number of cells in the network should be invariant.
This is required, to compare the different flow con-
trol schemes under the same conditions, as shown
in below. Note that if we focus on a part of the
network, it can be regarded as an open network in
which the number of cells is not invariant.

3.2 Two Flow Control Schemes

In this subsection, we show two different rate control
schemes for the different processes used to decide the
specified rate.

One is for specifying rates using a rate signal from
downstream, i.e., a rate-based flow control. We call
it Rate Driven Control (RDC). Ordinarily, each node
sends a rate signal at every deterministic time inter-
val. Let D be the round-trip time between adjacent
nodes. For simplicity, we set the time interval between
consecutive rate signals to D.

Consider a node downstream from link i. The node
calculates the following quantity, at every time period
D:

Ñi(t) = Ni(t) + {Rinr (i, t−D)−Routr (i, t−D)}D,
(21)

where Rinr (i, t) denotes the specified rate to send up-
stream at time t, Routr (i, t) denotes the specified rate
received from downstream at time t, and Ni(t) denotes
the queue length of the buffer. Then the node calcu-
lates the new specified rate as

Rinr (i, t) = R
in
r (i, t−D) +

αL− Ñi(t)
D

, (22)

where L denotes the buffer capacity, and α is a thresh-
old parameter such that αL denotes the threshold of
the buffer. Ordinarily, each node sends a rate signal at
every deterministic time interval, D. However, in case
of emergency, that is, during buffer overflow/underflow,
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Fig. 4 Behavior of normalized throughput.

each node can immediately send a rate signal.
The other scheme specifies a rate based only on the

queue length of the nodes’ own buffers, i.e., a queue-
threshold based flow control. We call it Queue Driven
Control (QDC). Ordinarily, each node sends a rate sig-
nal at every deterministic time interval,D. The specify-
ing rate is determined by the queue length of its buffers.
Each node makes an effort to ensure that the queue
length is equal to the predefined threshold in its buffers.
Let Rinq (i, t) be the specified rate to send upstream at
time t:

Rinq (i, t) = R
in
q (i, t−D) +

αL−Ni(t)
D

. (23)

As with RDC, in case of emergency, that is, during
buffer overflow/underflow, each node can immediately
send a rate signal.

3.3 Experimental Evaluation of Stability

Let us investigate stabilities of the above two flow con-
trol schemes, RDC and QDC, by using a Monte Carlo
simulation. The environment of our simulation is as
follows:

• bandwidth and distance between adjacent
nodes
Each horizontal link in Fig. 3(a) is 300Mbps and
20 km in length, and each vertical link is 600Mbps
and 2 km in length. The links are assumed to be
WANs and LANs, respectively. Note that the hor-
izontal links are the bottle-necks of the traffic flow.

• buffer capacity
All nodes have the same capacity, 300 cell places.
The threshold parameter α is set to be 1/2.

• cell overflow
In order to maintain the network load, the dis-
carded cells, when no buffer space is left, are again
added to network nodes chosen at random. There-
fore, the total number of cells in the network is
invariant.

• total number of cells

There are 40,000 cells in the network. This corre-
sponds to about 160% of the total capacity of all
links. This implies that the load of the network is
high.

Based on the above environment, we compare the
throughput and queue length of the two networks, one
controlled by RDC and the other by QDC.

At the initial time t = 0, both networks are near
equilibrium states. Figure 4 shows the behavior of the
average and the variance of the normalized throughput
of RDC and QDC. These figures show that RDC is
stable but QDC is not, and the variance is remarkably
increased for QDC.

Figure 5 shows the queue lengths of buffers in the
nodes in the network. These data are from a typical
sample path of the simulation. Each pixel corresponds
to a node and the configuration is the same as a net-
work topology. The queue length of a node is denoted
by the color density. “Step” denotes simulation time,
“Link” denotes the normalized throughput, “Queue”
denotes the average queue length, and “Loss” denotes
the number of lost cells (running total).

The figure shows that the queue length remains ho-
mogeneously distributed for RDC. However, for QDC,
node queue lengths go to basically two states: very long
and almost empty. The nodes with very long queue
lengths are clustered. This clustering process corre-
sponds to the process of decreasing normalized through-
put, shown in Fig. 4.

3.4 Experimental Evaluation of Robustness

Next, let us investigate robustness of the performance
with respect to increasing network load. Simulation
environments are almost the same as the above model,
but the number of cells in the networks are increased
with time. The number of cells in the network is zero at
the initial state. Then, five cells are added to network
nodes chosen at random, every one simulation time.

The results obtained in the simulation are shown
in Fig. 6. Note that the number of cells increases as
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Fig. 5 Behaviors of queue length in each node.

time progresses. As shown in Fig. 6(a), most of cells re-
main on the link between 0 and 4,000 cell times because
the network is not busy, and incoming cells are imme-
diately sent out. After 5,000 cell times, the throughput
becomes constant at about 92%. This means that cells
begin to be stored in buffers.

After 15,000 cell times (after the number of cells in
the network exceeds 75,000), the throughput of the net-
work controlled by the QDC begins to drop. Finally, its
throughput is lowered to nearly 0 and the control fails.

On the other hand, even at 25,000 cell times (number
of cells is 125,000), RDC maintains high throughput
without failure. In addition, RDC causes hardly any
cell loss, as shown in Fig. 6(b). The throughput RDC
begins to drop and the control is fails at 30,000 (150,000
cells). Since the total capacity of the buffer for the bot-
tle neck links is 120,000 cells, however, it is safe to say
that RDC can endure in higher load conditions and can
maintain normal network operation.

Figure 7 shows the behaviors of the queue lengths
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Fig. 6 Behaviors of throughput and the number of lost cells.

of buffers in the nodes in the networks as the same in
Fig. 5. Since the number of cells in the network in-
creases as the simulation advances, it becomes blackish
overall. It is possible to see that the areas of congested
nodes spread in the QDC. On the other hand, in the
RDC it can be understood that there are some con-
gested nodes but they are not clustered, and the ex-
pansion of congestion is minimized to prolong control
without cell loss.

4. Linear Relaxation Model of Rate

4.1 Linear Interaction Model

This subsection proposes a phenomenological model for
RDC. Let M(i, t) be the throughput of link i, that is,
the number of cells on link i at time t. We assume the
utilization of the network is sufficiently high.

When Rinr (i, t) = R
in
r (i, t−D), no change occurs. If

Rinr (i, t) 
= Rinr (i, t−D),M(i, t) changes to 12DRinr (i, t).
The time for achieving 12DR

in
r (i, t) is independent of its

value, and instead depends only on the round-trip time
D, that is,

M(i, t+D)−M(i, t)

=
1
2
D (Rinr (i, t)−Rinr (i, t−D)). (24)

This means the difference of Rinr (i, t) and R
in
r (i, t−D)

determines the transition rate ofM(i, t). WhenM(i, t)
is near equilibrium M0(i, t), and since we regard D as
a time constant, we model

∂

∂t
M(i, t) = −M(i, t)−M0(i, t)

D
, (25)

as linear relaxation.
The throughput of the network is then denoted by

XE(t) =
∑

i

M(i, t). (26)

4.2 Gaussian Approximation near Stable Equilibrium
State

Let the normalized throughput be XI = y0 when the
network is in equilibrium. From Eqs. (6), (25) and (26),
we have

XI(t+∆t)−XI(t)

= −XI(t)− y0
D

∆t+O(ε)∆t, (27)

for small ∆t. Since y(t) in Eq. (16) means the leading
term (O(1) term) in the first cumulant (the average) of
XI, we focus only on O(1) term in Eq. (27) and replace
XI(t) with y(t). Then we have

∂y(t)
∂t

= −y − y0
D

. (28)

From the temporal evolution equation (18), we have

c1(y, t) = −y − y0
D

, (29)

as shown in [1]. In addition, we assume

c2(y, t) = const. = br, (30)

like Brownian motion. We set the initial distribution
of XI as

PI(x, 0) = δ(x− x0). (31)

Then non-equilibrium distribution of XI near the equi-
librium state is

PI(x, t) =
1√

2πεv(t)

× exp
[
− (x− y0 − (x0 − y0) e

−t/D)2

2 ε v(t)

]
,

(32)
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Fig. 7 Behaviors of queue length in each node.

where, from v(0) = 0,

v(t) =
brD

2
(1− e−2t/D), (33)

this is the solution of Eq. (19). The non-equilibrium
distribution (32) is the solution of the Fokker-Planck
equation [7]

∂

∂t
PI(x, t)

=
[
− ∂

∂x
c1(x, t) + ε

1
2
∂2

∂x2
c2(x, t)

]
PI(x, t),

(34)

obtained by truncating Eq. (10) after O(ε2).
Figure 8 shows an example of temporal evolution

of the solution (32), where we set y0 = 0, x0 = −1,
D = 1, and ε = br = 1 for simplicity. Initially, the
solution is around x0, and afterward it moves to y0 as
t increases. The movement is slowing down when the
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Fig. 8 Behavior of the solution of Gaussian approximation.

average of the distribution (32) approaches the equilib-
rium y0. The distribution (32) approaches, in accor-
dance with increasing t,

lim
t→∞

PI(x, t) =
1√
πεbrD

exp
[
− (x− y0)

2

ε brD

]
, (35)

and it is independent of the initial state XI = x0.

5. Nonlinear Relaxation Model of Queue
Length

5.1 Redefinition of a Network Performance Measure

This subsection shows a model of the QDC scheme.
For QDC, the behavior of the throughput is directly
controlled by the queue length in each node through
(23). Since the time derivative of the throughput cor-
responds to the second time derivative of the queue
length, the equation describing temporal evolution of
the throughput is, therefore, the second differential
equation with respect to time. This implies that the so-
lution of the equation contains some oscillation modes.
It is thought that such oscillation causes the deteriora-
tion of throughput shown in Fig. 5. Unfortunately, the
technique based on the master equation is not applica-
ble to this type of equation.

To avoid this, we want to focus on the trend of
the deterioration process of throughput without oscilla-
tion. To this end, we describe the behavior of the queue
length in each buffer directly using a phenomenological
model. Since, in our network model, there is a constant
number of cells in the closed network, if we know the
behavior of queue lengths, we can find the throughput,
that is, the number of cells on links. For simplicity,
we introduce the parameterized buffer shown in Fig. 9.
Let us assign 0 to the point of half the buffer capac-
ity, that is, just at the threshold. The fully occupied

Fig. 9 Buffer model.

and emptied points of the buffer are assigned +12L and
−12L, respectively. Values of Ni(t) are denoted by this
buffer.

We define the total number of cells in all buffers
in the network at time t, denoted by NE(t), and the
normalized value of NE(t) denoted by NI(t), that is,

NE(t) :=
∑

i

Ni(t), (36)

NI(t) := NE(t)/ΩN , (37)

where ΩN is system size and, in this case, denotes the
number of buffers in the network. NE(t) and NI(t)
are categorized into extensive and intensive quantity,
respectively, same as XE(t) and XI(t).

We define the probability density function ϕ(χ, t)
such that the probability of the normalized queue
length NI(t) being in χ ≤ NI(t) < χ + dχ at time t
is ϕ(χ, t) dχ. We assume NI(t) as a Markovian random
variable, and describe the temporal evolution of ϕ(χ, t)
using a master equation. Truncating the Ω-expansion
of the master equation after O(ε2), the temporal evo-
lution equation of ϕ(χ, t) is obtained as the following
Fokker-Planck equation:

∂

∂t
ϕ(χ, t)

=
[
− ∂

∂χ
c1(χ, t) + ε

1
2
∂2

∂χ2
c2(χ, t)

]
ϕ(χ, t),

(38)

where ε := Ω−1
N , and c1 and c2 are drift and diffusion

coefficients, respectively.

5.2 Minimal Nonlinear Interaction Model

As shown in Sect. 3.3, the QDC scheme is unstable in
equilibrium at high throughput. In addition, compli-
cated behavior such as clustering implies that there is
nonlinear interaction among the nodes. It is thus nec-
essary to consider a nonlinear differential equation.

Let us consider the minimal nonlinear interaction
describing the QDC scheme. We consider the Fokker-
Planck equation (38) and assume the nonlinearity is
only in the drift coefficient c1(χ, t), and the diffusion
coefficient c2(χ, t) describes the simple Gaussian white
noise.
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There are three equilibrium states of NI(t):

NI(t) = 0, NI(t) = +
1
2
L, NI(t) = −1

2
L. (39)

As shown in Sect. 3.3, NI(t) = 0 is unstable.
We assume c1(χ, t) is to have the following power

series expansion form:

c1(χ, t) =
∞∑

n=0

an(t)χn. (40)

Since the buffer threshold, that is, the target queue
length, is at half the buffer capacity, an(t) = 0 for all
even n. Thus, the terms of the even degrees of χ are out
of consideration from the symmetry of the buffer. In
addition, ifXI is near equilibrium, i.e., χ � 0, the terms
of the higher degrees of χ are negligible. Therefore, the
drift coefficient (40) is approximately denoted as

c1(χ, t) � a1(t)χ+ a3(t)χ3, (41)

near equilibrium χ � 0. Since NI(t) = 0 is unstable, let
us choose a1(t) > 0.

If we assume the simplest non-linear interaction
among nodes, c1(χ, t) is assumed to have the form (41)
for all χ. Since χ = 0, ±L/2 are equilibrium points and
c1(χ, t) = 0 at the equilibrium points, we have

c1(χ, t) = γ χ− g χ3, (42)

where γ, g > 0 and

g = 4γ/L2. (43)

It is natural to consider that γ is determined by the
round-trip time D.

On the other hand, since the diffusion coefficient
c2(χ, t) is assumed to describe the simple Gaussian
white noise, we have c2(χ, t) = const. = bq.

The minimal nonlinear Fokker-Planck equation is
then obtained by

∂

∂t
ϕ(χ, t)

=
[
∂

∂χ
(−γ χ+ g χ3) + εbq

2
∂2

∂χ2

]
ϕ(χ, t).

(44)

In addition, we denote the first and second cumulants
of ϕ(χ, t) as Eqs. (16) and (17), after we replace ε with
ε. Then, the temporal evolution equations of the cu-
mulants of ϕ(χ, t) are obtained as Eqs. (18)–(20).

5.3 Nonlinear Scaling and Scaling Solution

Let the initial distribution of the nonlinear Fokker-
Planck equation (44) be ϕ(χ, 0) = δ(χ). This is the
unstable equilibrium. According to the nonlinear scal-
ing theory [8], the solution of (44) is obtained approxi-
mately as

Fig. 10 Behavior of the scaling solution.

ϕ(χ, t) � 1√
2πτ

[
1− g

γ
χ2 (1− e−2γt)

]−3/2

× exp
{
− χ2

2 τ [1− (g/γ)χ2 (1− e−2γt)]

}
,

(45)

where τ is the scaling time such that

τ =
εbq
2γ
(e2γt − 1). (46)

Solution (45) is called the scaling solution.
This scaling solution shows an interesting behav-

ior. Figure 10 shows a temporal evolution of the scaling
solution, where we set L = 2, γ = g = 1, and ε = bq = 1
for simplicity. Initially, the solution has a single peak,
and afterward it splits into double peaks in accordance
with increasing t. These peaks signify the very long and
the almost empty states of queue length. Note that we
can recognize that the double-peak state corresponds to
the final state of Fig. 5 for QDC. Therefore, the emerg-
ing double peak means that the deteriorating process
of throughput is caused by clustering of the busy nodes
and their spread.

Here, we state a supplemental comment about the
above interpretation. Note that the final state in Fig. 10
does not mean that each node becomes busy or idle
alternatively in the final state of QDC in Fig. 5. The
final state in Fig. 10 means that state of the network
becomes one of the following states:

• all nodes in the network are congested, or
• all nodes in the network are idle.

Since our network model is closed and the number of
cells in the network is constant, it is impossible for the
state of the network to become one of the above two
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states. If we consider a very large closed network and
we focus on a part of the network as an open network,
that partial network must become one of the above
states. We should therefore interpret Fig. 10 as a clus-
tering process of busy state nodes.

5.4 Anomalous Fluctuation and Behavior of Through-
put

We are interested in the time the throughput of the
network deteriorates. This is interpreted as the time
when double peaks of the solution emerge. Let the
variance of the solution be, initially, O(ε). However, the
variance becomes anomalously large and reaches O(1)
as t increases. This is called the Anomalous Fluctuation
or Anomalous Enhancement of Fluctuation, and often
appears in state transition from unstable equilibrium
to stable equilibrium. Temporal evolution (19) implies,
as shown in [8], [9],

v(t) ∝ ẏ(t)
ẏ(0)

, (47)

where ẏ(t) denotes the time derivative of y(t). Note
that y(t) and v(t) describe not the throughput but the
queue length in this QDC case. However, since the total
number of cells in the network is constant, the variance
v(t) is the same as that of the throughput, and ẏ(t) is
the negative value. Therefore, we can also say that (47)
is reasonable for describing the throughput.

Actually, the QDC case shown in Fig. 4 shows the
time when the maximum variance corresponds to the
steepest change in the average throughput.

The time the throughput of the network deteri-
orates corresponds to the time the variance becomes
large and reaches O(1). The physical meaning of this
is that a small fluctuation grows and causes the aver-
age value to change. The time for it, t0, is called on-set
time [8], and is obtained as

t0 �
1
2 γ

log
2γ2

εbqg
. (48)

6. Conclusion

We have described two flow control schemes, RDC and
QDC, in high-speed and large-scale networks as au-
tonomous distributed systems. In both schemes, each
node in the network handles its local traffic flow only
on the basis of the information it knows. It is prefer-
able, however, that the decision making of each node
leads to high performance of the whole network. To
this end, the relationship between local decision making
and global performance of flow control is the essential
object.

We are especially interested in the behavior of the
local congestion, whether it grows and causes deterio-
ration of the whole network performance through inter-
action among nodes, or it remains a local phenomenon

and diminishes with time. Experimental results show
interesting behaviors of throughput for both schemes.
Performance of RDC is stable, but that of QDC is un-
stable. For QDC, the congested nodes are clustered.

To describe the behaviors, we proposed phe-
nomenological models based on the Ω-expansion tech-
nique and gave physical interpretations. Behavior of
throughput for RDC is described by a linear relax-
ation model of the Fokker-Planck equation. The so-
lution of the equation is a stable Gaussian distribution.
For QDC, we have assumed that the behavior of queue
length can be described by a nonlinear Fokker-Planck
equation, and have applied the simplest nonlinear re-
laxation model. The solution of the equation describes
the clustering process of the congested nodes.

Main residual issues are listed as follows:

• To verify the minimal non-linear model Eq. (42).
(Is Eq. (42) valid for a large χ?)

• To obtain the relationship between the round-trip
time, D, and coefficients in Eq. (44).

• To obtain necessary and/or sufficient conditions
which enable us to design a stable flow control
scheme in high-speed networks.
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