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PAPER

Efficient Cell-Loss Ratio Estimation for

Real-Time CAC Decisions

SUMMARY In ATM networks, Connection Admission Con-
trol (CAC) is a key part of traffic control but several challenging
problems still remain. One is how to assign sufficient bandwidth
fast enough to achieve real-time CAC. Although solutions to the
bandwidth assignment problem have been proposed, they require
a lot of calculations depending on the number of VCs and on the
number of different VC types. Therefore, it is difficult to apply
these solutions to real-time CAC decisions. This paper presents
a cell-loss ratio evaluation algorithm that takes the peak and the
average cell rates as inputs, and provides the upper-bound of the
cell-loss ratio. The most remarkable characteristic of this algo-
rithm is that it does not require exhaustive calculation and its
calculation load is independent of the number of VCs and the
number of different VC types. Using this approximation, we pro-
pose a real-time CAC. The experimental results show that call
processing of the proposed CAC using a processor, whose perfor-
mance is almost the same as that of a processor in a conventional
PBX, terminates within several milliseconds.

key words: ATM, CAC, cell-loss ratio, nonparametric approach

1. Introduction

An essential feature of an Asynchronous Transfer Mode
(ATM) based solution for B-ISDN is its potential to use
the same set of network resources to support a variety
of user services[1]. With ATM technology, networks
will support many types of traffic generated by a vari-
ety of services and they must guarantee quality of service
(QoS). Controlling traffic is therefore a vital technology
in attaining such requirements. Connection Admission
Control (CAC) is particularly important and an issue
peculiar to services that guarantee QoS.

The principle of CAC is as follows: at the time
of connection setup, a user specifies QoS requirements
and anticipated traffic characteristics using a source traf-
fic descriptor. The network allocates resources for the
connection based on these requirements and the source
traffic descriptor values, rejecting the connection if there
are not enough network resources available. The QoS
requirements are expressed in terms of cell-loss ratio
(CLR) and/or cell-transfer delay (CTD). This paper
deals with CLR [2].

There are still several challenging problems using
CAC with ATM networks. One of these is how to as-
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sign suflicient bandwidth for cell arrival processes that
are fast enough to achieve real-time CAC decisions.

The problem of assigning resources has been stud-
ied by many researchers. The solutions proposed for
this problem so far require many calculations, which
increases with the number of VCs or the number of dif-
ferent VC types. So, applying these solutions to real-
time CAC is difficult.

This paper extends previously published studies for
estimating sufficient resources with a light calculation
load suitable for real-time CAC. We derive a good ap-
proximation for CLR estimation from the source traffic
descriptor values.

It gives a sufficiently accurate upper bound for CLR
with a light calculation load. Using this approxima-
tion, we propose a real-time CAC whose calculation
load is independent of the number of VCs and the num-
ber of VC traffic types. The experimental results show
that CLR evaluation for call processing of the proposed
CAC using a processor, whose performance is almost
the same as that of a processor in a conventional PBX,
terminates within several milliseconds.

This paper is organized as follows. In Sect.2, we
define some terminology used in this paper and briefly
review related work. In Sects.3 and 4, we give the ap-
proximation for CLR evaluation, which does not re-
quire convolution. Specifically, we introduce a Bellows-
like Poisson distribution for the evaluation, which turns
out to be efficient at reducing the calculation load. In
Sect. 5, we show the validity of the Bellows-like Poisson
distribution through numerical examples. Characteris-
tics, that is, sufficient accuracy and a light calculation
load, of the proposed algorithm are discussed. Finally,
based on the CLR evaluation in Sect.4, we propose a
real-time CAC in Sect. 6.

2. Background

First, we define the terminology used in this paper.
There are one or more VPs accommodated in a trans-
mission link. Each VP is assumed to have a rigid
boundary, or in other words, it is guaranteed that each
VP is assigned a fixed bandwidth. A typical scheme
for assuming this property is to apply periodic services
to each VP. It is possible that the transmission link is
used as one VP. We define VCs accommodated in the
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VP as being of the same QoS class. We define type as the
traffic characteristic specified by traffic descriptor values.
If VCs are described by the same traffic descriptor, we
define them as being of the same type of traffic.

A nonparametric approach [2],[3] to CLR evalua-
tion has been proposed for assigning bandwidth to any
cell stream using the values of the source traffic descrip-
tor (peak and average cell-rate). The decisions of this
CAC are based on the upper bound of the CLR derived
from the source traffic descriptors without assuming any
particular parametric model for the cell arrival process.

In order to model the actual cell arrival process,
there are many parametric models proposed in previous
research, for example, MMPP[4]. These models are
of actual cell arrival processes pertaining to the source
traffic itself (voice, video, and so on) or its superpo-
sition. When using real-time CAC decision, however,
these parametric models have the following difficulties:

1. Although, theoretically, the actual complex cell ar-
rival process can be reproduced if many parameters
are introduced and are set to appropriate values, it
is almost impossible in practical application.

2. If these parameters are given appropriate values,
Usage Parameter Control (UPC) cannot decide
whether or not the actual cell arrival process com-
plies with these parameters. For example, the in-
terval variance between the arrival of cells cannot
be controlled by UPC.

Therefore, if we assume the actual cell arrival
process complies to a certain parametric model (e.g.,
MMPP with some number of states), it has no meaning
when the assumption is not reasonable. UPC cannot
decide whether the assumption is reasonable or not. Ac-
cordingly, it is desirable that CLR evaluation for CAC
decisions be carried out using only parameters that can
be controlled by UPC. If not, the framework that con-
trols quality using UPC will fail. The nonparametric
approach satisfies the above requirement.

Due to the fact that UPC can control the burst size
of the source traffic, CLR evaluation should take this
into account, from the viewpoint of effective utilization
of the network. However, this evaluation requires solv-
ing a simultaneous equation or recursion with a number
of variables corresponding to the buffer capacity, mak-
ing it unsuitable for real-time CAC decisions. There-
fore, this paper focuses on CLR evaluation using only
the peak and average cell-rate.

In the nonparametric approach, time is divided into
fixed-length slots each of which corresponds to the trans-
mission time of an ATM cell. The slot length is defined
as L/C, where L is the cell length [bits] and C'is the ca-
pacity of the VP[bps]. There are n VCs in the VP, and
each VC is indexed by i (i = 1,2,...,n). Let p;(k) de-
note the probability that k cells from VC i arrive at the
output queue during an observation interval of v slots.
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The upper-bound for CLR B, of the VP is given by
kZ [k —)* ot (k)
=0
Bnp = %) ) (1)
kp(™) (k)
k=0

where

p(n) (k
It

= {p1xp2*x--- *pr}(k),

[#]* = max(0,z).

For an output buffer size of K, v is chosen to be
K + 1[5]. The binomial operator x denotes the con-
volution of the form f x g(k) = >, f(D)g(k —1). To
attain the worst case estimate, p;(k) is defined, using
only traffic descriptors, as

1~ A;/R; k=0,
pi(k) = ¢ Ai/R; k= R;, 2
0 otherwise.

In this expression, R; and A; denote the maximum and
average number of cells arriving during  slots from the
i-th VC, respectively, and are expressed as

R, = [rvL/C], Ai=a;vL/C, (3)

where [z] denotes the minimum integer greater than or
equal to =, and ; and a; are the peak and average cell
rates of the i-th VC, respectively.

Notice that traffic model (2) is independent of the
burst size. This model represents a long burst-length
limit which consists of peak and average cell rates. It
is known that this model is the worst pattern for maxi-
mizing (1)[3].

Here, the relationship between the previously de-
scribed CLR evaluation and UPC is briefly described.
First, a case is described for a Sliding Window type or
Jumping Window type of UPC. The peak rate observa-
tion is valid if the window size is less than or equal to
v[5]. The average rate observation prefers a large win-
dow size. However, since A; is in terms of an infinite
time average, we accept that the average rate observa-
tion with a finite window size is more strict. Second, a
case is described for a Dual Leaky Bucket type of UPC
defined as a GCRA [6] in the ATM Forum. The peak
rate observation has no problems, and the average rate
observation makes the cell stream average become less
than or equal to A;, taking into consideration a long
time period. Regardless of the UPC mechanism, if an
appropriate UPC, meaning that the actual peak and av-
erage cell-rate are less than or equal to the negotiated
ones, is used, we can obtain the upper-bound CLR us-
ing (1)[7].

We assume that there are no cell delay variations.
However, even when there are, equations similar to (3)
are still applicable[8] and the following discussion is
valid. To simplify the explanation, this paper does not
take cell delay variations into consideration.
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Calculation of the upper-bound CLR By, using (1)
involves convolution. Therefore, the calculation load
increases rapidly as the number of VCs or number of
VC types increase. Suppose there are m classes and
the number of class m VCs is n,,; then the calculation
complexity of (1) is on the order of

0TI ms), @

and it increases exponentially when m is large.

To achieve real-time CAC, we must reduce the cal-
culation load for the CLR estimation. With an ap-
propriate UPC of the peak and average cell rate, By,
gives the correct upper bound for CLR[3]. Therefore,
our goal is reducing the calculation load without de-
creasing the accuracy of the nonparametric approach.
We achieve this by introducing several effective heuris-
tics with which evaluation is given in terms of a closed
form function, diminishing the number of convolution
calculations.

Our discussion begins with a simple case where all
the VCs in a class have the same peak rate, then we
extend the results to a more general case.

3. Preliminary

To reduce the calculation times for CLR evaluation, we
start from a simple case where there are many VCs and
all VCs are of the same type.

We suppose that all VC 4 (i = 1,2,...,n) are of
the same type. We assume that each one has a distri-
bution of the form in (2) and that parameter values
are given by R; = R and A; = A. The distribution
{p(™(k); k = 0,1,...}, which is the probability of &
cells arriving during + slots, for the aggregate traffic is
thus given by

Wl

_k
- nCrr (7)) (1= 5)" "
P (k) = k=0,R,2R,...,
0 otherwise.

We take n — oo while keeping nA constant. Then

(nA/R)"

ko
This suggests that it is reasonable to approximate
p™(kR) using the Poisson distribution P (k) =
exp (=) A¥/k! with parameter A = nA/R for n >> 1.
It should be noted that the Poisson distributions in this
paper do not describe input processes.

Next, we consider a case where all VCs accommo-
dated in a VP have the same peak cell rate; R; = R. We
assume the number of type j (j = 1,2,...,m) VCs is n;
and that the traffic of each VC is characterized by A; and
R. We define the distribution {p("’)( k); k=0,1,...},
which is the probability that the number of type 7 cells
arriving during v slots is k, and A = Z n;A;. We take
n; — oo while keeping n;A; constant. Then

p(”)(kR) —s exp(—nA/R)
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" 05B) — exp (—ny ;1) P4

where k is a non-negative integer. We calculate the con-
: (m5) )
volution of p;™* for n; — oo as

PKR) = {Br % B2 %+ % b }(kE)
= exp(~a/m) LY. ®
where
Pi(k) = Jim  p™ (k).

Therefore, we can also approximate p(kR) to the Pois-
son distribution Py (k) = exp (—A)A*/k! with parameter
A= A/R for n; > 1. Note that the derivation of (5) is
valid when all R; are equal to R.

Using (5), the CLR evaluation formula is obtained
by replacing p(™ (k) in (1) with (k). The CLR B in
this approximation is expressed as

i ER —~]* p(kR). (6)

The calculation time for (6) depends on the convergence
speed of this series. The speed directly depends on the
values R and A, but does not directly depend on the
number of VCs or the number of different VC types.

The result can be apphed to CAC in the following
way. VCs of the same peak rate are grouped together
and accommodated in separate VPs. A CAC decision
is applied individually to each VP in isolation. Clas-
sifying traffic into classes of uni-peak types reduces the
complexity of the traffic control. We can control the
admission of VCs by taking only the average cell rate
of each VC into consideration. Consequently, it is suf-
ficient for CAC to only handle the offered load of each
VP. This approach gives an accurate upper bound of
CLR in the case of many VCs. In this case, the previ-
ous methods using convolution require heavy calcula-
tion. Therefore, this approach is effective in reducing
the calculation load.

4. CLR Evaluation for a Class of Multiple Types of
Traffic

4.1 Bellows-Like Poisson Distribution

The CLR evaluation in (6) is only applicable where all
types of VCs in a VP have the same peak rate. In this
section, the previous results are extended to deal with a
case where VCs with various peak rates are multiplexed
into a VP. As preparation for this extension, we define
a Bellows-like Poisson distribution.

Definition: Bellows-like Poisson distribution {©(), a, b;
k); A, a, b: constant, k =al+b(¢=0,1,2,...)} is de-
fined as
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O\, a, by k) = { OP*(E)

where Py (£) = exp (=) X?/£1.

The Bellows-like Poisson distribution ©(A, a, b; k)
is an extension of Poisson distribution Py (£), such that
£(=0,1,2,...) is transformed by scale-parameter a and
shift-parameter b. ©(A, a, b; k) is reduced to Poisson
distribution Py (k) when a =1 and b = 0. Distribution
p(kR) in (5) is an example of a Bellows-like Poisson
distribution, namely

(k) = ©(A/R, R, 0; k).

k=al+b,

otherwise,

(D

Our strategy for this extension is as follows: we
assume that it is valid to use a Bellows-like Poisson
distribution for CLR evaluation as shown in the pre-
vious section. A Bellows-like Poisson distribution has
desirable properties for efficient CLR evaluation. These
properties are:

1. A CLR evaluation using a Bellows-like Poisson
distribution is easy to calculate because a series for
computing the expectation value converges as fast
as a series for a Poisson-distributed random vari-
able, with respect to the summation of k in (7).
Therefore, using a Bellows-like Poisson distribu-
tion reduces the calculation load.

2. A Bellows-like Poisson distribution has three de-
grees of freedom, which are parameters A, a, and b.
Therefore, we can handle even high order moments
of this distribution.

According to this strategy, we expect the extension using
a Bellows-like Poisson distribution to give an accurate
CLR evaluation with a light calculation load.
The remainder of this section shows how CLR eval-
uation is accomplished using the above strategy.
First, we show the effect of parameter b in
O(A,a,b; k) using the relationship between parameter
b and v. We consider two distributions of the num-
ber of cell arrivals during fy slots. One is {p(c)( ); k=
0,1,2,...} ofa VC, with R (©) = A(9), which is a special
case of (2); that is ‘

@ _ | 1(=AQ/RE) k=R,
P (k) {0

otherwise. ®)
From definition (3), although R(®) of the former VC has
been assumed to be an integer, we can make the same
interpretation as stated previously when R is not an
integer. In addition, we permit R and A to be neg-
ative. The other is {g(k); £ = 0,1,2,...} of aggregate
traffic for arbitrary VCs. We replace d1str1but10ns of
the number of cell arrivals in (1) with {g%p(®}(k). The
numerator of (1) can then be expressed as

>k —F {axp k)
k
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~Zk A]* gk — A@)
=Z
k

Therefore, the former VC varies parameter y to y—A©),
or in other words, varies the bandwidth of VP corre-
sponding to Al

If distribution (k) is a Bellows-like Poisson distri-
bution such that

q9(k) = ©(X, a,b; k),

— A g(k). ©9)

then {g % p{9}(k) is also a Bellows-like Poisson distri-
bution; that is

{gxpV}(k) =
Therefore, from (9), we have

S k=" O\ a,b+ A k)
k

=Y [k—v+ AT O\ a,b;k). (10)

O\, a,b+ A k).

Next, we show the relationships between parameters A,
a, and b and the moments of Bellows-like Poisson dis-
tribution ©(), a, b; k). Due to the fact that we introduce
O(\, a, b; k) as the distribution of the number of arriving
cells, we restrict the range of parameters: A and a > 0.
We assume that the i-th VC (i = 1,2,...,n) has
R; and A;, and that the distribution of the number of
arriving cells is given by (2). In this case, the average
C,, the variance C,, and the 3rd central moment C3 of
the number of arriving cells during v slots from all VCs,
that is the cumulants of p{™ (k) in (1), are expressed as

¢ = i A;,
Cy = Z A; (R; — A;), and (1)

=1

1l

4.2 1In the Case of C5 >0

For C3 > 0, let us introduce a heuristic in which the
distribution of the number of cell arrivals {p(k); k =
(R + 6A (¢ = 0,1,2,...)} is the Bellows-like Poisson
distribution

p(k) = ©(A/R,R,6A;k)

exp (—A/R)( A/R)‘Z/E' k=/(tR+6A,
otherwise,
where
Cs (Co)?
= — = 12
R=gh A= (12)
and
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6A=Cq — 5
3

A:C]_—

With this setup, it is easily verified that this distribution
function gives the same moments as (11); that is

£=0

Cp = (k—C1)* B(k),
£=0

Cs =) (k—C1)° k),
£=0

where k = /R + 6A.

This observation suggests that it is reason-
able to replace the distribution p(™ (k) in (1) with
©(A/R, R,5A;k). Thus, we obtain CLR evaluation for-

mula B in the form

oo

~ 1
B = & AZ:; [k—~]T ©(A/R, R,6A;k)
— & e (-A/R)
© 4
XZ [lR —~v 4 6A]*T (AQ!R) , (13)

=

where we use the relation in (10). The calculation time
for (13) depends on the convergence speed of this se-
ries. This speed directly depends on the values R, A,
and 6A, but does not directly depend on the number
or types of VCs. Moreover, C;, Cy, and Cs are the cu-
mulants of distribution ©(A/R, R, 64;k) or p(™ (k) in
(1), and calculation of C;, Cs, and C3 requires only a
minimal amount of processing because these values can
be updated from previous values by applying a small
number of addition and subtraction operations.

An example of how to calculate (13) is shown in
the Appendix.

4.3 1In the Case of C3 <0

Next, we consider the case where C3 < 0. When C5 = 0,
we cannot define A using (12). In addition, when
C3 <0, then R < 0 and A < 0 are obtained from (12).
To avoid these problems, we redefine C5 as a positive
value.

In addition, although Cj5 is positive, when it is a
small value, it incurs a problem. This is because the
convergence speed of series (13) depends on the value.
For small values of C3, a large number of iterations is
necessary. To avoid this problem, we also redefine Cs
for not only C3 < 0 but also C3 ~ 0

An example of how to determine a new C; when
C3 <0 or C3 =~ 0 is shown in the Appendix.
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S. Numerical Examples
5.1 Class Example of Uni-Peak Types of Traffic

Here we show the accuracy of CLR evaluation using
(6). Consider two types of traffic, type-1 and type-2,
both having the same peak rate of 10 Mbps/VC, where
the ratio of the average rate of type-1 to that of type-2
is 2:1. Figure 1 shows the CLR evaluation using (6)
and the upper-bound for CLR using (1) where the num-
ber of multiplexed type-1 and type-2 VCs is 50 VCs +
50 VCs, 100 VCs + 100 VCs, and 500 VCs + 500 VCs.
We choose a VP capacity of 150Mbps and an output
buffer size of 100cell places. Our approximation over
estimates CLR. When there is a large number of VCs,
our approximation evaluates CLR quite accurately. In
this case, because (1) requires a heavy calculation load
for convolution, our approximation is efficient. More-
over, our approximation uses only the average cell rate
of VCs, so we can operate the network using the offered
load of VPs that accommodates a uni-peak class.

5.2 Class Example of Multiple Types of Traffic

Now, we examine the accuracy of CLR evaluation using
(13) and the validity of the assumptions in Sect.4. Con-
sider two types of traffic, type-1 and type-2. Type-1 has
a peak rate of 10 Mbps and an average rate of 0.5 Mbps,
type-2 has a peak rate of 1.5Mbps and an average rate
of 0.2Mbps. We choose a VP capacity of 150 Mbps and
an output buffer size of 100 cell places. Figure 2 shows
the CLR evaluation using (13) and the upper-bound
for CLR using (1) when the ratio of the average rates
of type-1 to type-2 is 8:2, 5:5, and 2:8. Our approxi-
mation gives an accurate evaluation over a broad range
without the need for convolution calculation.

Next, we examine the accuracy of the CLR evalu-
ation where C3 < 0 as described in Sect.4.3. Consider
two types of traffic, type-1 and type-2. Type-1 has a
peak rate of 10Mbps and an average rate of 2 Mbps.

108 | ] | T ]
A Our approximation using (6).
Number of type-1 and type-2 VCs /
|50 VCs + 50 VCs
0100 VCs + 100 VCs
1083~ 0500 VCs + 500 VCs 7
and using (1).
o
-
o
107 i
10-8 t

0.15 0.20 0.25 0.30
Offered Load

Fig. 1 Example of CLR estimation using Poisson approxima-
tion (uni-peak rate class).
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102
o]
103 /»/” <
-4 & ]
10 82 A7
P A
1078 v
= yd /‘/w
— 46
o 10 %V f{
107 5:5 0 2:8
/ '
8 / O Upper-bound CLR _|
10 f / using (1).
10 A CLR evaluation
10 / using (13).
10 t 1 T T T
0.2 0.3 0.4 0.5 0.6 0.7
Offered Load

Fig. 2 Example of CLR estimation using our approximation.

10-1
102 ﬁ/‘
108 /
-4
& 10 g
© s /1 oUpper-bound CLR _|
10 using (1).
A CLR evaluation
10 using (13).
107 d region of C3 <0
108 T — st

0.4 0.5 0.6 0.7 0.8 0.9
Offered Load

Fig. 3 Example of CLR estimation using our approximations
when C3 < 0.

Type-2 has a peak rate of 10Mbps and an average rate
of 8 Mbps. We choose a VP capacity of 150 Mbps and
an output buffer size of 100 cell places.

Type-2 has a negative 3rd central moment and Cs
becomes negative according to an increase in the num-
ber of type-2VCs. Figure 3 shows the CLR evalua-
tion using the prescription described in Sect.4.3 and
the upper-bound for CLR using (1) when the number
of type-1 VCs is 10 and the number of type-2 VCs is 6,
7, ..., or 14. In the region, in which the offered load is
greater than 0.7, C3 is a negative value. Our approxima-
tion using the prescription gives an accurate evaluation
where C3 < 0.

5.3 Tteration Times for the CLR Evaluation

Figure 4 shows how the iteration times for CLR evalu-
ation with (13) and (1) depend on the number of aggre-
gate VCs for the two types of traffic. Type-1 and type-2
traffic have peak rates of 10Mbps and 1.5 Mbps, aver-
age rates of 0.5Mbps and 0.2Mbps, respectively, and
the capacity of the VP is 150 Mbps, the output buffer
size is 100 cell places. The same number of type-1 and
type-2 VCs are multiplexed in the VP. We measured the
calculation load of (13) such that the truncation error
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107
2 .6
S 10 o
§ e
2 408 A
5 /
3
o
2 10 /
=4
10° ]
O Nonparametric approach in (1).
10%; A Qur approximation in (13).
10'—= ——=
100
10 100 1000 10000
Number of VCs

Fig. 4 Number of iterations for our CLR approximation.

Calculation time for CLR evaluation.
[ 10 [ 20 | 30

with co-processor (msec) | 0.6 | 0.8 | 1.1
without co-processor (msec) | 2.5 | 3.7 | 4.9

Table 1

iteration times N

for the convergence value of (13) is less than 0.03%. The
number of iterations for our approximation is small and
insensitive to the number of VCs.

5.4 Calculation Time for the CLR Evaluation

Here, we show the calculation time for CLR evaluation
using the proposed method. We assume that a processor
for call processing in SW is 68030, and its processing
rate is 10 Mips. We consider two processors: one with a
floating-point co-processor and the other without one.

When we calculate CLR evaluation by truncating
the summation to the first 10, 20, 30 terms in (A- 1),
that is where N =10, 20, 30 shown in the Appendix,
the resulting calculation time for both cases is shown in
Table 1. The case without a co-processor is supposed as
a conventional PBX case. Therefore, the results show
that call processing of the proposed CAC using a pro-
cessor, whose performance is almost the same as that of
a processor in a conventional PBX, terminates within
several milliseconds.

6. Application to CAC

Based on our CLR evaluation, we propose the follow-
ing real-time CAC.

1. At the time of connection setup, a user specifies the
QoS requirements and the anticipated traffic char-
acteristics using a source traffic descriptor.

2. Calculate C;, Co, C3, R, and A using (12) at each
VP accommodated in the connection.

3. If C5 does not satisfy (A-2), then re-calculate C.
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4. Calculate the CLR evaluation using (13).

5. Compare the CLR evaluation with the QoS re-
quirements.

6. Connection is accepted if the CLR evaluation is
smaller than all the QoS requirements of VPs ac-
commodated in the connection. Otherwise connec-
tion is rejected.

7. Conclusion

In this paper, we have presented an approximation of
CLR for multi-class VCs without convolution calcula-
tions. Due to the fact that convolution is not needed,
the time necessary for calculation is short and is inde-
pendent of the number of VCs and the number of types
of VCs accommodated in the VP. Moreover, the ap-
proximation gives an accurate evaluation of the upper
bound of CLR and is applicable to CAC. Therefore, we
can achieve real-time CAC using this CLR evaluation.
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Appendix: Relationship between C; and Iteration

This section describes the method for determining a new
Cs when C3 < 0 or C5 = 0. To begin with, we consider
the following quantities:

_7—6A

A= i M= [A] .
Using A and M, we can rewrite (13) as
~ R - (A/R)M+E
B=— —A — LY
. exp ( /R)k=0 (M —A+Ek) T+ 5)
R
= — exp(—A/R) S, (A-1)

Cy

and we define the summation part, with respect to k, in
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(A-1) as S. When we calculate (A- 1) using the sum-
mation of the first N terms, that is, N is the number of
iterations, we split S into two parts:

N-1

_ (A/R)M+k
S = ];) (M—A+ k)m
> A/R)M+k
+I§V (M — A+ k)m.

We define the first term and the second term on the right-
hand side as S; and S,, respectively. S, corresponds
to the error caused by truncation of the summation in
(A-1). When applying this to CAC, it is sufficiently ac-
curate that the CLR evaluation using S is in the same
order of B using (13). Therefore, if S5 < Sy, we can
recognize that Sy is an efficient CLR evaluation.
Sy is upper-bounded as

s (A/R)PTE
Sy = kg(am) GER
(A/R) & (4/R)"
g 2Ry
_(A/RY [ a Y
- (v )

where, a =M —A+N,B8=M+N and Y = / . On
the other hand, S is lower-bounded as

N-1
_ (A/R)MHE
S, = I;(M—A+k)m
N-1
> WS -2
k=0
(A/R)P

= AR (N(M M)+ ZN(N - 1)) .

Therefore, a sufficient condition such that Sy < S is

o 1
1—Y+(1—Y)2 gN(M—A)+§N(N~1).

We approximate M/ — A as 1, we can get a sufficient
condition on C5 as

F(N) ++/(F(N))2 +G(N)
Ca 2 2X(N)(N —1) ’ (A-2)
where
F(N) = C:X(N)(v - Ch),
G(N) = 4X(N)(1 = X(N))(C2)*(N — 1).

Therefore,. if C3 does not satisfy (A-2), we give C; a
minimum value using (A-2).
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