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PAPER
Modeling Polarization Caused by Empathetic and Repulsive
Reaction in Online Social Network

Naoki HIRAKURA†a), Student Member, Masaki AIDA†b), and Konosuke KAWASHIMA†c), Fellows

SUMMARY While social media is now used by many people and plays
a role in distributing information, it has recently created an unexpected
problem: the actual shrinkage of information sources. This is mainly due to
the ease of connecting peoplewith similar opinions and the recommendation
system. Biased information distribution promotes polarization that divides
people into multiple groups with opposing views. Also, people may receive
only the seemingly positive information that they prefer, or may trigger
them into holding onto their opinions more strongly when they encounter
opposing views. This, combined with the characteristics of social media,
is accelerating the polarization of opinions and eventually social division.
In this paper, we propose a model of opinion formation on social media to
simulate polarization. While based on the idea that opinion neutrality is only
relative, this model provides new techniques for dealing with polarization.
key words: social media, polarization, filter bubble

1. Introduction

Today, a lot of social media streams exist and play important
roles in information distribution. Unlike traditional mass
media, social media allows users to collect information on
interesting topics more efficiently. However, the increased
convenience has been accompanied by the unexpected prob-
lem of the diminution of actual information sources. The
main reasons for this are users’ freedom to choose which
streams to follow and the recommendation system, which
delivers information thought to be of interest to individual
users. Polarization is a concern as only users with similar
ideas tend to communicate with each other, which creates a
biased information distribution environment [1]. Polariza-
tion is the emergence of groups with conflicting opinions on
a topic. As polarization strengthens, it leads to an intensi-
fication of slander and defamation between the conflicting
groups. Polarization was confirmed on several topics. For
example, polarization on three major topics: gun control,
same-sex marriage, and climate change [2] and secular and
Islamist groups [3].

Networks play a significant role in the formation of
the individual’s opinion, and many models have been pro-
posed [4], [5]. In this paper, we propose a model of opinion
formation on social media to simulate polarization. This
model incorporates users’ empathetic and repulsive reac-
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tions to social media posts based on the following ideas.
People are more likely to accept others’ opinions if they
support their preferred opinions, and to ignore the opposing
opinions. This is called confirmation bias [6]. In particular,
social media promotes this, making it easy to form clusters of
users with similar opinions. In a closed community of people
with similar opinions, the same opinions are reinforced, and
different opinions are actively suppressed. This can create a
special kind of common sense that is valid onlywithin a com-
munity; it is referred to as the echo chamber phenomenon.
For example, biased linkage patterns in Blogs about political
topics [7] and social media users’ tendency clustering along
party lines [8] were found. Besides, quantifying echo cham-
bers on Twitter that emerged with the impeachment of the
former Brazilian President was conducted [9]. These studies
support the presence of echo chambers in OSNs.

Moreover, people can feel strong repulsion towards
opinions that are different from their own. This means that
when people see an opinion that differs from their own, they
will come to believe more strongly in the opinion they origi-
nally had. In psychology this is called the backfire effect [10],
and there is a report that confirms the backfire effect in social
media users [11].

A opinion formation model incorporates the backfire
effect was proposed [12]. This model is called the BEBA
model because it incorporates two types of interactions:
backfire effect and biased assimilation. In thismodel, regard-
less of the actual distribution of opinions, neutral opinions
are artificially introduced in advance and are used as a stan-
dard to determine which interaction predominates. Based on
the assumption of neutral opinions, the BEBA model posits
that biased assimilation is established between users who
have the same opinions, while the backfire effect emerges
if the users have different opinions. Polarization occurs be-
tween users who have conflicting opinions, which are opin-
ions on opposite sides of the neutral opinion. Polarization
never occurs if all users have opinions on the same side of the
neutral opinion. Of importance, our paper proposes a model
that reflects the idea that opinion neutrality is determined by
relative differences in user opinions.

In this paper, we propose amodel of user opinion forma-
tion as evidenced by interaction via social media. A unique
feature of our model is that it eliminates the need to establish
an absolute opinion neutrality point. This feature reflects
our idea that polarization arises with relative differences in
user opinions, rather than from any predetermined neutral
opinion. Our model is designed to change continuously the
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strength of the interaction based on differences in opinion.
Also, two types of reactions to social media posts are consid-
ered: empathy and repulsion. We assume that the former is
stronger than the latter as opinions are closer, and its strength
decays as opinion difference strengthens. Conversely, the lat-
ter is stronger than the former when the opinions differ, and
its strength decays the closer the opinions are.

To understand the behavior of the proposed model, we
conduct simulations. They reveal parameter characteristics
and show that the model can form either large groups or
multiple small groups.

The rest of this paper is organized as follows. In Sect. 2,
we explain related work and clarify the position of this study.
Section 3 proposes a model of opinion formation based on
empathetic and repulsive reactions to social media posts.
In Sect. 4, we evaluate the proposed model and show how
different parameters contribute to polarization. Section 5
compares the proposedmodel with previous study and shows
that it can effectively deal with polarization. In Sect. 6, we
conclude.

2. Related Work

As mentioned in Sect. 1, features of the proposed model are
that it obviates the need to artificially introduce the neutral
point of opinions, that the strength of the interaction changes
based on the difference in opinions, and that the opinion
value is updated based on information diffusion on the OSN.
We will explain the key advances over existing study by
discussing these three points.

First, we discuss the fact that the proposed model elim-
inates the need to artificially introduce a neutral point of
opinion in advance. In addition to [12], which we discussed
in Sect. 1, [13] is an existing study that introduces repulsive
interactions after assuming that the objective neutral opinion
is 0. In that study, it is rare for agents to completely change
their original opinion by crossing over the neutral point of
opinion. The interactions of users with opinions of different
signs are governed by different rules. For the situation in
which the two agents’ opinion values are close but their sign
is different, [13] proposed three types of interactions: nega-
tive interactions, indifference, and repulsion. Regardless of
interaction type, the sign of each agent’s opinion value does
not change. Besides, many other models also artificially in-
troduce a neutral point of opinion in advance at the origin
of the axis. Typical models that reflect such thought about
opinion neutrality are DeGroot model [14] and Friedkin-
Johnsen (FJ) model [15]. Ordinary, these kinds of models
describe the user’s opinion as continuous real value in [−1,1]
or in [−∞,+∞], and 0 represents a neutral opinion. Many
models that extend DeGroot model and FJ model have been
proposed. For example, there are extended models focusing
on polarization: a model based on biased assimilation that
extends the eGroot model [16] and a model examining the
filter bubble effect to the polarization that extends the FJ
model [17]. Since each model extends the DeGroot model
or the FJ model, thought of opinion neutrality is the same.

There are also models that have the same thought of opin-
ion neutrality other than DeGroot, FJ, and these extending
models. For example, [18] use a sign of the opinion value to
describe difference of user’s stance. On the other hand, since
our model sets no objective neutral opinion and instead ad-
dresses the difference in opinion strength, it allows for more
subtle interactions among users.

Next, we discuss how the strength of the interaction
changes based on the difference in opinions. The bounded
confidence model is a model that determines the presence or
absence of an interaction based on the difference in opinions.
This model uses a predetermined threshold value, called
the confidence radius, and interaction occurs only between
agents whose difference in opinion value is less than or equal
to the confidence radius. One type of bounded confidence
model is the Deffuant-Weisbuch (DW) model [19]. In this
model, if the difference in the opinion values of two randomly
selected agents is less than or equal to the confidence radius,
their opinions approach each other.

Another type of bounded confidence model, the
Hegselmann-Krause (HK) model, updates opinion values
synchronously [20]. In this model, if the difference in the
opinion values of two agents is less than the confidence ra-
dius, it is considered that they are adjacent on the network.
The user’s opinion value is updated to the average value of
the opinion values of itself and neighboring users.

In addition, a model that extends the HK model based
on social judgment theory has been proposed [21]. In this
model, one agent classifies another agent as being suitable for
acceptance, non-commitment, or rejection based on the dif-
ference in opinion; the corresponding responses are positive
acceptance, ignoring, and negative perception. Two thresh-
olds are needed to establish these three judgement types.

As shown above, in the bounded confidence model and
its extended model, threshold values are set in advance to
determine the existence and type of interaction. Whereas
these previous studies set thresholds in advance and so lack
flexibility, this paper proposes a continuous, threshold-less
model.

In addition, the proposal differs in terms of how it han-
dles repulsive interactions. In [21], based on the social
judgment theory, agents whose opinions are close to each
other always develop a positive attitude, and agents who
have different opinions always develop a negative attitude.
The proposed model, on the other hand, stochastically se-
lects empathetic and repulsive reactions, and the strength of
the reaction is determined by a continuous function of the
difference in opinion values: if the opinions are close, the
empathy is large and the repulsion is small. It should be
noted that the amount of change in the opinion value with
repulsion when opinions are close is so small that there is vir-
tually no substantially change in opinion. The same can be
said for empathy and repulsion when opinions are far apart.
The strength of the empathetic and repulsive reactions will
be similar for those who are some distance apart in opinion,
and both reactions are moderate.

Similar to the proposed model, a model that defines
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interaction rules as a continuous function is also proposed,
in which the opinions of users approach each other if they
are close, and they move away from each other if they are far
apart [30]. In [30], the cubic curve is used as the simplest
form to represent the reaction, which is attractive when the
opinions are close and repulsive when they are far apart.
Although the approximation of cubic functions is a main
term of the Taylor expansion near the equilibrium point, it is
unnatural to define it in the whole parameter range. On the
other hand, the proposed model assumes that the strength of
the reaction changes exponentially. In the proposed model,
the strength of the interaction is reasonable. For example,
the rate of decrease in the strength of the interaction when the
difference increases by δ is exp(−k(|∆| + δ))/exp(−k |∆|) =
exp(−kδ), which is constant and highly universal regardless
of the value of δ.

In [21] and [30], opinions are definitely attracted with
each other when opinions are close and opinions are defi-
nitely repulsed each other when opinions are far away. On
the other hand, the proposed model probabilistically chooses
empathetic reaction or repulsive reaction. Though the aver-
age characteristics of the proposed model are similar to the
model [30], social dynamics are not always driven by av-
erage characteristics. Individual reactions are diverse and
such fluctuation of individuals can influence macro social
dynamics. Our proposed model can describe individual re-
actions with fluctuations. It is necessary to compare how
the difference between the two models actually affects the
dynamics, but this is future work.

Next, we discuss how to update opinion values to re-
flect information diffusion over the OSN. This is related to
the choice of interact partners. In this paper, opinion for-
mation is considered to occur with information diffusion on
OSNs. Existing opinion formation models describe several
ways in which interaction partners are selected: all agents
update their opinions synchronously [14], [15], or two ran-
domly selected agents update their opinions [19], [22]. In
this paper, the multivariate Hawkes process is used to de-
termine the user who posts and the time of the posting, and
the posting user’s neighbors may update their opinions in re-
sponse. The multivariate Hawkes process is a point process
with mutual excitation in which multiple processes promote
the occurrence of each other’s events [23]. It is effective in
modeling posts on social media, where a post by one user
triggers posts by its neighbors [24], [25].

This paper is an extension of our prior study [26]. In
a specific advance, we evaluate the behavior of the model
when each user has different parameters.

3. Modeling Polarization by Empathy and Repulsion

We model situations in which a user’s posts on social media
influence the opinions of other users. In thismodel, two types
of interactions are considered: empathy and repulsion. Users
strongly empathize with posts that are close to their opinions
and dismiss posts that express opinions very different from
their own. In the case of repulsion, users are repulsed more

Fig. 1 Amounts of opinion changing by empathetic and repulsive inter-
action.

by posts that are more distant from their opinions, and are
less likely to be repulsed by posts that are closer to their own
opinions. These two kinds of interactions are stochastically
chosen, therefore, three types of reactions are introduced:
empathy, repulsion, and disregard. Important points of the
proposed interaction rule are that it eliminates the need to
introduce both a point of neutral opinion and a threshold
that determines the type of interaction. Intuitive drawing
of interaction rules is shown in Fig. 1. When the difference
between two users’ opinions is small, the amount of opinion
changing by empathetic interaction is large and the amount of
opinion changing by repulsive interaction is tiny. Conversely,
when the difference between two users’ opinions is large, the
amount of opinion changing by empathetic interaction is tiny
and the amount of opinion changing by repulsive interaction
is large. The following rules determine how opinions are
changed based on these reactions.

Consider a social network with N users. User i (i =
1, . . . , N) is deemed to have opinion value oi(t) ∈ [−1,1];
the opinion value op

i (t) of user i towards a post at time t is
op
i (t) = oi(t) and reflects the user’s opinion at that time. We
assume that the opinion of user i is impacted by concurrent
posts. If user j is the author of the latest post seen by user
i, then the opinion value of user i at time t changes in re-
sponse to op

j (t
−), where t− represents time right before t. The

opinion value of user i is given by oi(t) = oi(t−) + f (oi(t−),
op
j (t
−)). The second term on the right side is explained later.
When user i sees the latest post of user j, user i develops

either an empathetic or repulsive reaction with probability of
pi or 1 − pi , respectively. We propose a model of change in
opinion value, assuming that the magnitude of the empathy
and repulsion depends on the difference in opinion values.
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Fig. 2 These two illustrations show the amount of opinion change in the cases of∆ = o
p
j (t
−)−oi (t

−) ≤

0 (Fig. 2(a)) and ∆ = o
p
j (t
−) − oi (t

−) > 0 (Fig. 2(b)). The cyan circles and orange squares are the user’s
and post’s opinion values, respectively. The blue arrow and red arrow indicate the amount of opinion
changing by empathetic reaction and repulsive reaction, respectively.

First, consider the case of empathy. User i should show
a stronger empathetic reaction to posts whose opinion values
are close to their own, and weaker empathy when the opin-
ion values are very different. Based on this, we introduce
function f (oi(t−), op

j (t
−)), which represents the change in

the opinion value, as follows

∆ c k exp(−k |∆|). (1)

Note that ∆ = op
j (t
−) − oi(t−) is the difference between the

opinion value of the latest post seen by user i and the user’s
opinion value. Parameter k(> 0) is a constant that deter-
mines the attenuation in the intensity of empathywith respect
to the absolute value of the difference of opinion values |∆|,
and c is a parameter that is adjusted to yield oi(t) ∈ [−1,1],
which satisfies ck ≤ 1.

Next, we consider the case of repulsion. In this case,
a stronger repulsive reaction should be developed to posts
that are very different from own opinion values, and the
repulsion shouldweaken as the opinion values approach each
other. In order to express the repulsive reaction in the same
form as empathy, we impose a periodic boundary condition
on the two ends of +1 and −1 to harmonize the difference
between the opinion value of a post and the user’s opinion,
|∆′ | = 2 − |∆|; the smaller the difference |∆′ | is, the larger
the repulsive reaction becomes. Based on this, we design
function f (oi(t−), op

j (t
−)), which represents the change in

opinion value, as

(1 − oi(t−)) c k exp(−k |∆′ |) , (∆ ≤ 0), (2)
− (1 + oi(t−)) c k exp(−k |∆′ |) , (∆ > 0). (3)

Figure 2 illustrates the concrete responses of expres-
sions (1), (2), and (3). The blue circle indicates a user’s
opinion and the orange square indicates the post’s opinion.
Numbered line of [−1,1], the solid line, delineates opinion
space. We also impose a periodic boundary condition on the
two ends of +1 and −1 to define the new difference of the
opinion values as |∆′ | and the relationship is |∆′ | = 2−|∆|. It
is used to define the opinion change rule of the repulsive re-
action in the same form as the empathetic reaction. Note that
the orange square on the dashed line indicates the same opin-
ion on the solid line. The green arrow indicates the amount
of opinion value change caused by the empathetic reaction.
The smaller |∆| is, the stronger the empathy is. The purple
arrow indicates the amount of opinion value change caused
by a repulsive reaction. The smaller |∆′ | is, the stronger the
repulsion is.

Expression (1) shows the change in the opinion value in
the case of an empathetic reaction; it indicates that the user’s
opinion value approaches the opinion value of the post by
an amount proportional to the difference, c k exp(−k |∆|). In
this case, the positive or negative value of ∆ corresponds to
the direction of the movement in the user’s opinion to be
closer to the opinion of the post as shown in the negative
direction of Fig. 2(a) and the positive direction of Fig. 2(b).

Figure 2(a) shows the case of ∆ ≤ 0. The arrow point-
ing in the negative direction from the blue circle represent-
ing the user’s opinion value indicates that the user’s opinion
value approaches the opinion value of the post by the pro-
prtion c k exp(−k |∆|) of difference |∆|. On the other hand,
Fig. 2(b) shows the case of ∆ > 0, where the sign of ∆
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denotes a positive change in opinion value in the opposite
direction to that of Fig. 2(a).

Expressions (2) and (3) show the change in opinion
value under a repulsion reaction. First, we will discuss the
case of ∆ ≤ 0. As shown in Fig. 2(a), the opinion value
of user i increases by the proportion c k exp(−k |∆′ |) of dif-
ference 1 − oi(t−) between the opinion value of user i and
the most extreme opinion value. In this case, the amount
of change in the opinion value becomes the expression (2)
and the user’s opinion value moves away from the posted
opinion value. We now discuss the case of ∆ > 0. As shown
in Fig. 2(b), the opinion of user i decreases by the proportion
of c k exp(−k |∆′ |) of difference −(1 + oi(t−)) between the
opinion value oi(t−) of user i and the most extreme opinion
−1. In this case, the amount of change in the opinion value
is given by the expression (3), where the user’s opinion value
moves away from the posted opinion value.

Parameter k (> 0) represents the attenuation rate of the
strength of the effect, and the value of k characterizes the rate
of change in the strength of the effect based on the difference
in opinion values. Parameter k allows us to design opinion
value change rules where users show a stronger empathetic
reaction to posts with close opinion values and a stronger
repulsive reaction to posts with distant opinion values.

The limitation of the proposed model is that the range
of the opinion values can only be a finite interval. This is
because it is not possible to define periodic boundary condi-
tions. However, this limitation can be relaxed by introducing
an appropriate scaling. The typical scaling is stereographic
projection, which gives a bijection between points in (−∞,∞)
and points on an open section on a circle with a finite radius.

4. Evaluations of the Proposed Model

4.1 Preparation for Evaluations

We explain how we generated sequences of posts and the
index of polarization used in the evaluations of the proposed
model.

4.1.1 Generating a Sequence of Posts

Here, we employ the multivariate Hawkes process to gener-
ate artificial data [23]. The multivariate Hawkes process is
a point process in which multiple processes mutually excite
the occurrence of events. To use this for the generation of
user post sequences on social media, we assume that each
process is considered to be a user and each event is a post to
social media, and that posts are promoted between connected
users.

The posting rate, λi , of user i (i = 1, . . . , N) is ex-
pressed as follows.

λi(t) = µi +
∑
j∈∂i

∑
th ∈Hj

αji e−β j i (t−th ), (4)

where µi is the base rate, ∂i is the set of neighbors of user

i, Hj is the set of past posting times of user j, and th is its
element. αji and βji ( j = 1, . . . , N, i = 1, . . . , N) represent
the rate jump and attenuation rate for user i due to user
j’s posts, respectively. Thus, the posting rate of user i is
determined by the user-specific base rate and the previous
posts of neighboring users.

We generate a sequence of posts using the multivariate
Hawkes process. First, social networks with 100 nodes are
created by the Barabási-Albert model (hereinafter referred
to as the BA model) [27] and complete graph. In Eq. (4), αji

and βji are given as uniform random numbers in the range
of [0,1] for each combination of j and i ( j, i = 1, . . . ,N).
The base rate, µi , is given as a uniform random number in
the range of [0,1]. The following experiments use the 10000
postings generated by the multivariate Hawkes process.

Simulations are conducted according to thinning
method [29]. This method is briefly explained in Appendix.

4.1.2 Index of Polarization

We introduce the index [28] for frequency distribution
(π, y) = (π1, . . . , πn ; y1, . . . , yn) as the index of polariza-
tion:

P = K
n∑
i=1

n∑
j=1

π1+θ
i πj

��yi − yj �� , (5)

where n is the number of classes that equally divide the
opinion value space [−1,1], yi is the i-th class value from
the bottom, πi is the number of users belonging to the i-th
class, K is a parameter for normalization, and θ is a parameter
called the polarization sensitivity, which takes a value in the
range of (0, θ∗ ' 1.6]. According to [28], the stronger the
sense a user has of belonging to a class and the greater
the degree of hostility toward another class, the greater is
the degree of polarization. The index of polarization (5) is
designed to satisfy the appropriate axioms for a valid index of
polarization. For example, the maximum value is achieved if
half of the users belong to the lowest and half to the highest
class, and the minimum value is taken if all users belong to
the same class.

It is often observed that users are divided into groups
with conflicting opinions and slander each other on OSNs.
The polarization index (5), which has a higher value when
the group size is larger and the opinions between groups are
farther apart, is considered to be effective in evaluating the
polarization of people’s opinions.

In the following evaluation experiments, we set the pa-
rameter θ = 0.5 and the number of classes to 10 for the
follow reasons. This index can quantitatively measure the
degree of polarization in the distribution of opinion values
if the parameters used to identify the degree of polarization
of each opinion value distribution are properly set.

If the value of parameter θ, called the polarization sen-
sitivity, is small, the value of the polarization index P will not
be large unless the bias of the distribution is large. However,
if the sensitivity to polarization takes a value of (0, θ∗ ' 1.6],
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Fig. 3 Examples of opinion value change conducted in BA graph. These are typical patterns of opinion
formation and these indices of polarization are as follows: (a) low, (b) high, and (c) middle.

Fig. 4 Changing of polarization index corresponding to Fig. 3.

it can work as an indicator of polarization. Also, if the num-
ber of classes is too small, such as 2 or 3, there will be no
difference among the users belonging to each class in the
distribution of different opinion values, and the polarization
index is likely to have a high value even if the opinion values
are randomly distributed. The polarization index works well
as long as the number of classes is not set to such extreme
settings.

4.2 Parameter Characteristics of the Proposed Model

We conduct evaluation experiments to elucidate the char-
acteristics of the parameters of the proposed model. The
evaluation conditions are as follows. The initial opinion is
given as a uniform random number in [−1,1]. We apply the
opinion value change rule to the sequence of posts generated
in Sect. 4.1.1, with the probability of an empathetic reaction
and the probability of a repulsive reaction being pi = p and
1 − pi = 1 − p, respectively, for all i.

Three typical simulation results with different param-
eters for the opinion change using the proposed model in
the case of BA graph are shown in Fig. 3 and the case of
complete graph are shown in Fig. 5. Besides, the changes
of polarization index corresponding to opinion changing are
shown in Fig. 4 and Fig. 6, respectively.

We discuss the simulation results for BA graph first.
The probability of empathy p is set to p = 0.9 and p = 0.1
for the cases of Figs. 3(a) and 3(c), respectively; parameter
k is fixed at 2. The difference in the probability of empathy

reaction p yields the consensus of opinions in Fig. 3(a) and
the polarization of opinions in Fig. 3(b). Figure 3(c) shows
the case of k = 10. Since the influence of other users’ posts
is smaller than when k = 2, the opinion values of each user
do not change much from their initial values. Some users
did not join large groups in 3(a), 3(b), and 3(c). This is
because the number of interactions is different for each user
by using a sparse network model, the BA graph. Although
Fig. 3(c) does not show complete polarization, the simulation
is considered to be converged, as can be seen from the fact
that the polarization index in Fig. 4(c) does not changemuch.
Even if the polarization progresses further from this state,
there are many users whose opinions do not change due to
the influence of the graph structure, so the polarization index
does not fluctuate significantly to reach the maximum value.

Next, we discuss simulation results for a complete
graph. Experimental conditions are same as simulations
of BA graph; the parameter k is fixed at 2 and the probability
of empathy p is set to p = 0.9 and p = 0.1 for the cases of
Figs. 5(a) and 5(b), respectively. The results are similar to
the case of the BA graph, where consensus and polarization
occur due to differences in p. Figure 5(c) shows the case
where the parameters are p = 0.9 and k = 10. Two groups
are formed, but each group does not have the opinion value
±1. When k takes a relatively large value, it strongly em-
pathizes only with users whose opinions are very close and
strongly repels only with users whose opinions are far apart
and hardly influence each other in the middle. Therefore, the
two groups have little influence and converge to an opinion
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Fig. 5 Examples of opinion value change conducted in complete graph. These are typical patterns of
opinion formation and these indices of polarization are as follows: (a) low, (b) high, and (c) middle.

Fig. 6 Changing of polarization index corresponding to Fig. 5.

value other than ±1.
Comparing the case of BA graphs (Fig. 3) with the case

of complete graphs (Fig. 5), the difference is that the conver-
gence is faster in the case of complete graphs, and all users
belong to the group. This is because in the case of BA graph,
the number of interactions is biased for each user due to the
non-uniformity of node degree, and in the case of complete
graphs, anyone’s posts affect all other users.

We then evaluate the index of polarization of the final
state at the end of simulation using the index of polariza-
tion (5), for each combination of parameters p and k. The
normalization parameters are set to K =

(∑n
i=1 πi

)−(2+θ), the
polarization sensitivity is set to θ = 0.5, and the number of
classes is set to n = 10. Thus the possible values of the
polarization index lie approximately in the range [0,0.64).

We conducted 30 experiments with different initial
opinions and evaluated the probability of the consensus
reached and the probability of the polarization attained. Con-
sensus reached is defined as satisfying P ≤ 0.064 at the end
of the simulation, and polarization attainment is defined as
satisfying P ≥ 0.576 (top and bottom ten percent of the
possible values of the polarization index [0,0.64)).

Figure 7 shows the probability of consensus reached for
each combination of p and k. When k was relatively large,
consensus was not reached. This is because empathy decays
more strongly when k is high. When k is relatively small,

Fig. 7 Consensus probability of each combination of parameters. We
conducted 30 simulations for each combination of p and k in BA graph,
and evaluated the percentage of users reaching consensus (P ≤ 0.064).

the probability of consensus depends on probability p. The
closer p is to 1, the higher in the probability of consensus.

Figure 8 shows the probability of polarization for each
combination of p and k. When k is relatively large, no
polarization occurs. This is the same as in the probability
of consensus since users are less influenced by differing
opinions on posts given relatively large k values. When k is
relatively small, the probability of polarization depends on
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Fig. 8 Polarization probability of each combination of parameters. We
conducted 30 simulations for each combination of p and k in BA graph,
and evaluated the percentage of polarization (P ≥ 0.576).

Fig. 9 Consensus probability of each combination of parameters. We
conducted 30 simulations for each combination of p and k in complete
graph, and evaluated the percentage of users reaching consensus (P ≤
0.064).

the probability, p, of an empathetic reaction. In contrast to
the probability of consensus, polarization probability rises
as p approaches 0.

We also investigated parameter characteristics in a com-
plete graph. Figure 9 shows the consensus rate for the case
of complete graphs. The characteristic that the consensus
rate is high when the parameter k is relatively small and the
empathy probability p is relatively large is the same as in
the case of the BA graph. However, there is a difference
that the consensus rate is higher even in regions where k is
larger. Figure 10 shows the polarization rate for the com-
plete graph. As in the case of the BA graph, the polarization
rate is high when the parameter k is relatively small and the
empathy probability p is relatively small. However, there is
a difference that the polarization rate is high even in regions
where k is larger. The reason for this difference is due to the
structure of BA graphs and complete graphs, as described in
the comparison between Fig. 3 and Fig. 5.

Fig. 10 Polarization probability of each combination of parameters. We
conducted 30 simulations for each combination of p and k in complete
graph, and evaluated the percentage of users reaching consensus (P ≥
0.576).

4.3 Model Behavior underHeterogeneous Parameter Com-
binations

In this section, we conduct simulations under the condition
that the parameters are different for each user. The specific
conditions of the experiment are as follows. We prepare a
network with 50 users and each user’s parameter k is set
to k = 5 or k = 15. We simulate using different settings
of mixing ratio of the population of users with k = 5 and
k = 15. Specifically, we conduct experiments with each
combination of the following: (a) 50 users with k = 5, (b)
40 users with k = 5 and 10 users with k = 15, (c) 30 users
with k = 5 and 20 users with k = 15, (d) 25 users with k = 5
and 25 users with k = 15, (e) 20 users with k = 5 and 30
users with k = 15, (f) 10 users with k = 5 and 40 users
with k = 15, and (g) 50 users with k = 15. We conduct
100 simulations and compare the distribution of the index of
polarization at the end of each simulation for the different
mixing ratios. The probability of an empathetic reaction is
p = 0.5 for all users. Parameters and the number of classes
of polarization index (5) are the same settings used for the
experiments in Sect. 4.2.

Figure 11 shows the distribution of polarization at the
end of the simulation for each mixture ratio with different
values of parameter k. In Fig. 11(a), the parameter k = 5
for all users. Then, the lowest class of polarization index is
the most frequent and the highest class is the second most
frequent. The reason why the consensus is often achieved is
that the attenuation in the strength of empathy k is relatively
small. However, if the opinions are too far apart, the strength
of empathy decreases, and the effect of repulsion increases.
Once users start to get close to each other, they often reach
consensus, whereas interactions between users with quite
different opinions lead to polarization. As the mixing ratio
of the population of k = 5 and k = 15 changes, the number of
cases taking lower and higher polarization decreases, and the
number of cases taking middle polarization index increases.
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Fig. 11 Frequency distribution of the polarization index at the end of the simulation under mixed
conditions of users with different parameters. In Fig. 11(a), all users’ parameters are k = 5. In the order
of Fig. 11(b), 11(c), . . . , 11(g), the ratio of users with k = 5 decreases and the ratio of users with k = 15
increases. When the ratio of k = 5 is higher, it is easy to form a large group so that the polarization index
takes lower and higher values. As the ratio of k = 15 increases, users tend to form multiple small groups
so that the polarization index takes middle values. Besides, dashed lines are threshold to determine
consensus and polarization.

Users with a relatively large attenuation in empathy strength,
k, are more empathetic to posts that are very close to their
own but are less influenced by opinions slightly further apart.
As the number of users with relatively large k increases,
the variability of the opinion values in the whole network
decreases, and middle polarization index cases were more
frequent at the end of the simulation. From this result, it can
be seen when the proportion of users with k = 5 is large,
it is easy to form a large population while an increasing
proportion of users with k = 15 tends to form multiple small
groups.

5. Comparison with Previous Research

We compare our model with the opinion formation model,
which takes into account the reactions corresponding to em-

pathy and repulsion. As an example, we take the BEBA
model [12]. The BEBA model is based on the classical
opinion formation model of DeGroot model [14]; BEBA
contains biased assimilation and the backfire effect. Biased
assimilation means that we highly evaluate information that
is consistent with our original opinion, and the backfire effect
means that when we are exposed to an idea that is different
from our own, we come to believe more strongly in our
original opinion.

The BEBA model is briefly described as follows. First,
consider a social networkwith N users. User i (i = 1, . . . , N)
has opinion value yi(t) ∈ [−1,1] at time t. For adjacent users
i and j, if opinion values yi(t) and yj(t) are the same sign,
biased assimilation dominates, but if they are different signs,
backfire effect dominates. This means that opinion value
0 is neutral and users have different opinions depending on
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Fig. 12 Change in opinion values under the condition such that all users’
opinion values have the same sign.

whether they have positive or negative opinion values. On
the other hand, in the proposed model, the amount of change
in the opinion value is determined based on the difference
between the post’s and user’s opinion values. In order to
clarify the difference between the two models, we set all
initial opinion values to have the same sign in a comparative
evaluation.

Figure 12 shows comparison of experimental results of
BEBAmodel and the proposed model. First, we describe the
results of the experiments on the BEBAmodel. Figure 12(a)
shows the change in opinion values yielded by the BEBA
model. Since the initial opinion values with the same sign
were given to all nodes, the backfire effect was quiescent,
and the opinions became concentrated at the end of the sim-
ulation. Next, we describe the results of the experiments on
the proposed model. Figure 12(b) shows the change in opin-
ion values for p = 0.1 and k = 2 yielded by the proposed
model. Although the initial opinion values with the same
sign were given to all nodes, the amount of change in the

opinion values was determined based on the difference in
the opinion values, so that repulsion occurred and polariza-
tion was created. Depending on the parameter values used,
the proposed model was found to yield cases of polarization
in which repulsive reactions were active even with a biased
opinion value distribution.

In the case of a biased initial distribution, such that all
users’ opinion values are the same sign, the BEBA model
always reaches consensus. Besides, [13] also predetermines
the opinion neutrality and the sign of opinion value never
changes. On the other hand, the proposed model can predict
cases of polarization depending on the parameter settings.
Also, the proposed model can handle different cases of opin-
ion change, including cases where a consensus is reached
if we set different parameters. The difference in the results
between the two models is due to the difference in the idea
of opinion neutrality. Note that this comparative experiment
is only conducted with BEBA model but other models that
need to artificially introduce opinion neutrality in advance
basically behave in a similar way to BEBA model. As we
discussed in Sect. 2, other models that artificially introduce
opinion neutrality in advance include [14]–[18]. The pro-
posed model reflects the idea that opinion neutrality is not
artificially introduced but by the relative difference in users’
opinions; it can handle a wider range of opinion change
cases.

6. Conclusion

This paper proposed a model to simulate polarization of so-
cial media users. The model is characterized by two types
of reactions: empathy and repulsion, with different strengths
of influence being created by differences in user opinion
values. It also reflects the idea that relative differences in
opinion determine the neutrality of opinion. In particular,
since our idea of opinion neutrality dispenses that the arti-
ficially introduced concept of opinion neutrality, it has the
advantage of being able to respond flexibly to biased distri-
butions of opinion values. These features allow a wide range
of user characteristics to be appropriately modeled so as to
well cover the phenomenon of polarization. The dependence
of the change in the opinion value on the initial values of the
opinions will be examined in the future.
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Appendix: Simulation Method of Multivariate Hawkes
Process for Generating a Sequence of Post-
ing

We used the thinning method [29] for simulating the
multivariate Hawkes process and each user have posting rate:

λi(t) = µi +
∑
j∈∂i

∑
th ∈Hj

αji e−β j i (t−th ). (A· 1)

Using summation of all users’ posting rates, λ =
∑N

i=1 λi ,
we determine the time of next posting. Next, we determine
who post by ratio of posting rate λi/λ. Simulation detail is
described in Algorithm 1.

Algorithm 1 Simulation Method of Multivariate Hawkes
Process for Generating a Sequence of Posting
1: λ∗ ←

∑N
i=1 µi

2: t∗ ← 0
3: l ← 0
4: let T be the end time of simulation
5: while t∗ < T do
6: let E be a random number generated from exponential distribution

λ∗ exp(−λ∗x)
7: let t∗ ← t∗ + E be a candidate of next posting time
8: if t∗ > T , terminate the simulation
9: let r ← λ(t∗)/λ∗ be an adoption rate
10: let u be a random number generated from uniform distribution from

0 to 1
11: if u ≤ r then
12: adopt the posting time t∗ as next posting time
13: l ← l + 1
14: tl ← t∗

15: let v be a random number generated from probability distribution
P∗ ← λi (t

∗)/
∑N

i=1 λi (t
∗), thus v indicates posting user

16: i ← v
17: λ∗ ← λ(t∗) +

∑
j∈∂i αj i

18: else
19: reject the posting time t∗ as next posting time
20: λ∗ ← λ(t∗)
21: end if
22: end while
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