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SUMMARY  The phenomenon known as social polarization, in which a
social group splits into two or more groups, can cause division of the society
by causing the radicalization of opinions and the spread of misinformation,
is particularly significant in online communities. To develop technologies
to mitigate the effects of polarization in online social networks, it is neces-
sary to understand the mechanism driving its occurrence. There are some
models of social polarization in which network structure and users’ opinions
change, based on the quantified opinions held by the users of online social
networks. However, they are based on the interaction between users con-
nected by online social networks. Current recommendation systems offer
information from unknown users who are deemed to have similar interests.
We can interpret this situation as being yielded non-local effects brought on
by the network system, it is not based on local interactions between users. In
this paper, based on the spectral graph theory, which can describe non-local
effects in online social networks mathematically, we propose a model of po-
larization that user behavior and network structure change while influencing
each other including non-local effects. We investigate the characteristics
of the proposed model. Simultaneously, we propose an index to evaluate
the degree of network polarization quantitatively, which is needed for our
investigations.

key words: online social networks, polarization, Laplacian matrix, Fiedler
vector

1. Introduction

Inrecent years, social media, including Twitter and YouTube,
have been spreading rapidly, and information exchange and
dissemination on online social networks (OSNs) are being
actively promoted [1]. In particular, social networking ser-
vices (SNS) have become indispensable in our daily lives. By
using them, we can efficiently access information matching
our interests and easily communicate with other users who
share common interests [2]. Although the convenience of so-
cial media has been enhanced by providing individually op-
timized information to each user and promoting connections
among people through recommendation functions, these fea-
tures have the potential for causing polarization among users
[3]. In many studies, social polarization refers to the division
of a social group into two groups. In this study, we consider
social polarization in a more generalized way by defining it
as division into two or more groups.

Many studies have addressed the occurrence of social
polarization in online communications on social media. For
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example, [4] analyzed the Twitter discussions of several po-
litical groups and found that groups with different ideologies
interact less. This tendency was particularly noticeable be-
tween groups with opposing ideologies. In addition, [5]
showed that individuals with similar ideologies exchanged
more information on political topics than on non-political
topics. [6] and [7] pointed out that the social polarization
of users may contribute to the spread of misinformation and
fake news in social networks. To develop technologies to
mitigate the effects of polarization, understanding the mech-
anism driving its occurrence is necessary.

Some of the human factors that may contribute to the
occurrence of polarization include confirmation bias [8] (fo-
cusing only on information that conforms to self view) and
the backfire effect [9] (reinforcing own opinions when ex-
posed to opposing opinions). Some of the characteristics of
social media include filter bubbles [10] (the preferential pre-
sentation of information of interest to each user) and echo
chambers [11] (the reinforcement of user beliefs through
repeated interactions within a closed community). There
are many reports that these phenomena have been observed
in discussions of political topics in SNS [12], [13]. By
proposing a model that describes them, we believe that it is
possible to establish a basis for considering universal coun-
termeasures that can attenuate polarization in various kinds
of situations.

Related work has proposed some models of polariza-
tion that posit that the quantified opinions held by users
in social networks influence network structure changes and
the dynamics of user opinion formation. [14] introduced
a mathematical model to describe online discussions and
the attendant polarization; they concluded that the repulsion
of opinions among users can explain its occurrence. [15]
proposed a model in which user opinions and social inter-
actions change with the viewing of social media posts made
by users. They showed that segregated communities emerge
through social media mechanisms. These models describe
the process by which the opinions of each user affect the
network structure. However, network structure changes do
not directly affect the user opinion formation. Also, though
some models of polarization have been proposed in which
the opinions of users and connections between users mutu-
ally interact [16], [17], each user is only directly affected
by the users with whom it has some connection. There-
fore, they cannot describe the non-local effects yielded by
the recommendation functions of network systems. Some
models have also been proposed to investigate the effect of
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recommendation functions on polarization [18], [19]. How-
ever, even in those frameworks, the opinion change of each
user is not influenced by unknown users. In addition, [19]
focused on the function of recommending items, which is
often used in online shopping sites. Since the relationship
between users and items is different from the relationship
between users, however, its framework cannot describe the
function of recommending users in OSNs.

In general, user interest and network structure should
be related, and therefore they should interact. When the
opinions and interests of each user change, the relationships
among users is also expected change as a result. In addition,
users can view information transmitted by unknown users
in OSNs and can receive information from unknown users
who are deemed to have similar interests, so they may be
influenced by unknown users. These effects are non-local
interactions not based on the communication through links in
OSNs. Based on these considerations, we propose a model of
user polarization that takes account of OSN structure. In our
proposed model, we treat OSN structure in the framework
of spectral graph theory. In particular, we focus on the
Fiedler vector, which is akind of eigenvector of the Laplacian
matrix, for describing non-local effects. It enables us to
describe the process by which user opinions and network
structure change while influencing each other, as well as to
model user behaviors such as following and unfollowing,
that are common in social networks. Our proposed model
also takes into account the unique characteristics of each
user, such as leader and follower, so that it is a framework
that takes a realistic view of OSNs. Our model is effective
in understanding the non-local effects among users in OSNs
and the impact of the interaction between opinion change
and network structure change on polarization.

To evaluate the proposed model properly, we need a
quantitative index to measure the degree of polarization.
Many studies that propose indices of polarization focus on
the division of user opinions or network structure into two
groups [20], [21]. However, few indices allow for division
into three or more groups. In this study, we propose an index
to evaluate various types of polarization.

The rest of this paper is organized as follows. Section 2
explains spectral graph theory and the concept of the model
of polarization proposed in this study. Section 3 proposes
an index to quantitatively evaluate the degree of network po-
larization. Section 4 conducts some experiments to evaluate
the model and clarify its parameters’ characteristics. Finally,
we state conclusions and future work in Sect. 5.

2. A Spectral-Based Model of Polarization

In this section, we describe a spectral-based model of social
polarization. First, based on [22], [23], we introduce the
Laplacian matrix to express network structure. Then, we
describe the concept of the model that reflects user behavior
and characteristics in OSNS.
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2.1 Fiedler Vector and Similarity of User Opinions

Let G(V, E) be an (unweighted) undirected graph represent-
ing the structure of an OSN with N nodes, where V is the set
of nodes, and E is the set of undirected links. Here, nodes
and links represent users and the relationships between them,
respectively. When there is a link between nodes i and j,
they can communicate directly. The (unweighted) adjacency
matrix A := [A;j]i<i j<n is an N X N matrix defined as

)L GhEE,
Ay = {0, .j)¢E. M

If node i has degree d;, the degree matrix D is an N X N
matrix defined as

D := diag(dy, dy, . .., dn). 2)
The Laplacian matrix L of G(V, E) is defined as
L:=D-A. 3)

It is known that Laplacian matrix L has a minimum eigen-
value of zero. The multiplicity of eigenvalue zero is equal
to the number of connected components of G(V, E).

Assume that G(V, E) is a connected undirected graph.
Let us sort the eigenvalues of the Laplacian matrix of G(V, E)
in ascending order as follows:

0= <A1 £+ < An-y. (@)

The smallest eigenvalue that is not zero (the second smallest
eigenvalue 1) is called the algebraic connectivity, and it is
used as a measure of how tightly connected the undirected
graph is. Eigenvector vy of L associated with 4; is known
as the Fiedler vector [24].

Figure 1 shows an unweighted undirected graph with
four densely connected subgraphs connected by some links,
and Fig. 2 shows the components of the Fiedler vector of the
Laplacian matrix of the graph shown in Fig. 1. From these
figures, we can see that the four cluster structures of the plot-
ted points correspond to the four subgraph structures which
are characteristic of the graph. This example demonstrates
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Fig.1  Unweighted undirected graph with four densely connected sub-
graphs connected by some links.
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Fig.2  Components of the Fiedler vector corresponding to Fig. 1.

why the Fiedler vector can be taken as a useful index for
understanding graph structure.

Based on the above, we can connect OSN structure
and users’ opinions or tastes. Components of the Fiedler
vector that have similar values can be interpreted as similar
user opinions or tastes. Accordingly, we propose a model of
polarization that determines the opinion or taste of each node
based on the value of each component of the Fiedler vector
and change the network structure based on them. Here, note
that the values of the components are not directly related
to the strength of opinions. The fact that the values of the
components of the Fiedler vector are close indicates that the
corresponding users have similar opinions and tastes. This
idea makes it possible to apply the model to not only topics
where opinions fall into two groups, which has been the
target of related work, but also topics where more diverse
opinions are likely to be formed. We will describe how to
determine the opinion value of each node based on each
component of the Fiedler vector, along with the concept of
the model of polarization.

2.2 Concept of the Model of Polarization

In social media, including SNS, each user can freely follow
or unfollow other users as a response to the posts displayed on
the screen. Also, we think that some users in social networks
influence their surroundings by acting on their own opinions
and beliefs, while others form their own opinions and build
human relationships through the influence of other users.
Our model of polarization reflects these user behaviors and
characteristics.

To reflect the user characteristics of OSNs in our model,
we introduce two types of characteristic nodes on the undi-
rected graph representing the social network. One is the
leader node; it represents users who act with consistent opin-
ions and beliefs. This node has the constraint that the opinion
value of the node will remain fixed at the component of the
Fiedler vector in the initial state, regardless of the opinion
changes caused by network structure changes. The other
is the follower node; it represents users who form opinions
and human relationships as influenced by their surroundings.
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. : leader node . : follower node O : the other node

Red links will never be disconnected.

Fig.3  Example of leader and follower nodes.

This node has the constraint that it will never disconnect its
link with the leader nodes. We call the node that is nei-
ther leader nor follower the other node. Here, we regard the
opinion values of the follower node and the other node as the
components of the Fiedler vector. That is, they will change
with the network structure. Figure 3 shows an example of
leader and follower nodes. The red links in the figure will
never be disconnected even under network structure changes.
Here, we assume that the characteristic of each node does
not change regardless of network structure changes.

Next, we explain the procedures for disconnecting and
connecting links to describe the changes in the relationships
between users. At each time step, we select a node at random
and find its adjacent node whose opinion value is the most
distant from that of the selected node. Then, we disconnect
the link between them only if both of the following two
conditions are satisfied:

e The link does not connect a leader node to a follower
node.
* The graph remains connected if we disconnect the link.

The process of disconnecting links recreates the fade out
of relationships between users with different opinions and
tastes.

Then, if we disconnected the link, we select one node
that is not adjacent to the first selected node and connect
a new link between them. Here, we provide two ways of
selecting the node:

(i) With probability ¢, we randomly select one node from
the set of nodes that are not adjacent to the first selected
node.

(i) With probability 1 — ¢, we select one node that is not
adjacent to the first selected node and that has the closest
opinion value to it.

Since (i) is a link connection process that does not depend
on the opinion value of each node, we can assume that it
corresponds to a coincidental encounter in social networks.
On the other hand, (ii) expresses the process of connecting
people with similar opinions and tastes, so we can assume
that it corresponds to non-local effects such as the encounters
created by the recommendation functions in social media.
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In the environment of OSNs, random link connections as
in (i) are rare. Therefore, we believe that setting ¢ to a
small value can realistically represent the process of building
relationships between users in OSNs.

According to the rules described above, OSN struc-
ture and the opinion value of each node will change while
influencing each other by repeating the process of link dis-
connection and connection. This model does not change
the total number of links, but the degree of each node can
change.

3. Index of Social Polarization

In Sect. 2, we proposed a model of polarization for changing
the network structure based on the opinion value of each
node. However, to determine whether the network after a
structure change is polarized or not, a quantitative measure is
necessary. Clustering coefficients are attractive as indices to
evaluate the strength of polarization. This is because sparse
and dense parts are visible in a polarized network structure,
and the corresponding clustering coefficient is expected to
be high. However, it is difficult to distinguish between dense
networks (e.g., complete graphs) from polarized networks
using clustering coefficients because those graphs also have
high values. Moreover, they cannot determine how many
groups exist in the network. For these reasons, we believe
that clustering coefficients cannot be used to quantify po-
larization. Therefore, in this section, we propose an index
of polarization that describes both the number of polarized
groups and the strength of the polarization effects in the
network based on the distribution of the opinion value of
each node. The procedure to derive the index includes two
steps: determination of the number of polarized groups, and
evaluation of the strength of the polarization effects.

We start by deleting the nodes with degree 1 from the
network. This operation corresponds to deleting terminal
nodes in network analysis when extracting the network struc-
ture of an SNS. This process prevents us from being unable
to capture the rough characteristics of the network structure
due to the influence of small degree nodes.

Next, we normalize the opinion value of each node.
This process enables us to handle the component distribution
of the Fiedler vector, which greatly depends on the number
of nodes in the network and its structure, in a unified manner.
Let o; be the opinion value of node i, oy be the minimum
opinion value among all nodes, and op,x be the maximum
value. We define the normalized opinion value o; of node i
as follows:

of = 2(0i = Omin) _ )

Omax — Omin
The minimum and maximum values of the normalized opin-
ion value are —1 and +1, respectively.

Next, we evaluate the number of polarized groups in
the network and the number of nodes in each polarized
group based on the distribution of normalized opinion val-
ues. We divide the range [—1,+1] of normalized opinion
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values evenly into » intervals, and obtain the frequency dis-
tribution by counting up the number of opinion values in
each interval. If the frequency in an interval is greater than
or equal to a threshold 6, then we consider the nodes with
opinion values in the interval to be one group. That is,
threshold 6 represents the minimum number of nodes that
can be considered as a group. In addition, threshold 6 re-
stricts the maximum number of polarized clusters. Here, we
introduce some conditions that should be satisfied between
the scale of the network and the number of polarized groups
contained in it:

¢ As the scale of the network grows, the number of po-
larized groups that can be formed increases.

* A group with a very small scale relative to the scale of
the entire network is not considered a polarized group.

By considering the above two conditions, we define threshold
0 as

0= [W] : ©6)

where N is the number of nodes in the network and [x] is the
largest integer less than or equal to x. Based on the above,
let m,, be the number of polarized groups in the network and
gn be the m,-dimensional vector with the number of nodes
in each polarized group as each component, where n is the
number of intervals. Note that the range constraint on n,
described below, guarantees m,, > 1.

As an example, we obtain m, and g, from the com-
ponents of the Fiedler vector shown in Fig.2, that is, the
opinion value of each node. Figure 4 shows the opinion
values normalized to the range [—1,+1] using (5). Table 1
shows the frequency distribution table when the number of
intervals, n, is four. Threshold @ = 4, since the number of
nodes N = 22. From Table 1, since the frequencies of all
intervals are greater than or equal to 6, we obtain m4 = 4 and
gs = (6,5,5,6).

Using m,, and g,,, we define index P(n) for the degree
of polarization of the network structure as follows:

1.00 1 ® 0o 000
.

0.75 1

0.50 1 .

0.25 1

0.00 1

-0.25 .

normalized opinion

—-0.50 4 L4

-0.75 1

-1.00{ ® @ @ o o

node ID

Fig.4  Normalized opinion values.
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Table 1  Frequency distribution table (n = 4).
Opinion value | Frequency
-1.0~-0.5 6
-0.5~0.0 5
0.0~0.5 5
0.5~1.0 6
Table 2  Example of calculating each index.
n|mp | gn | Pin) | Py(n) | P(n)
3 2 (10, 10) 0.909 2.00 | 0.525
4 4 6,5,5,6) 1.00 1.00 | 0.707
5 4 (6,5,5,6) 1.00 1.00 | 0.707
0, my = 1,
P(n) := Pi(n) S0 @)

VP2 () + T

Here, Pi(n) and P,(n) in (7) are defined as

P = 1 > gulD) ®)
i=1
mp 2
P = 35 (0 = a0 ©)

i=1

where g,,(i) is the i-th component of vector g,,. Pi(n) is an
index that indicates how many nodes belong to some polar-
ized group out of all the nodes in the network. The larger the
value of Pi(n) is, the greater the degree of polarization is.
P>(n) is an index that indicates how unbalanced the number
of nodes in each group is. The smaller the value of P;(n) is,
the greater the degree of polarization is. P(n) is determined
by Pi(n) and P»(n), and the range of its value is [0, 1], where
the larger the value is, the more strongly polarized the net-
work structure is. In addition, since Pi(n) and /P>(n) + 1
have the same dimension, index P(n) is a dimension-less
measure. The reason why P(n) = 0 when m,, = 1 is because
we define social polarization as division into two or more
groups, as described in Sect. 1.

Finally, we calculate P(n) for each integer n satisfying
3 < n < [N/0] and define the index P* of polarization as
follows:

P* := max P(n). (10)

Based on the above, we quantitatively determine the degree
of polarization from P* and the number of polarized groups
on the OSN from m,, used to calculate P*.

Table 2 shows examples of calculating each index from
the distribution of opinion values shown in Fig. 4 in the range
3 < n < [N/8] = 5. Note that Py(n), P,(n), P(n) values are
written to three significant digits. From Table 2 and Eq. (10),
the degree of polarization of the network structure shown in
Fig. 1 is calculated as P* = 0.707. Considering this result
together with the fact that the number of polarized groups
when P(n) is maximum is m,, = 4, we believe that the values
of P* and m,, appropriately reflect the characteristics of the
network structure shown in Fig. 1.
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4. Basic Characteristics of the Proposed Social Polar-
ization Model

In this section, we examine through simulations how the
model parameters and the characteristics of nodes introduced
in the model described in Sect. 2 affect the social polarization
of the network structure.

The experiments use unweighted undirected graphs
with the number of nodes N = 102 generated by the Erdos-
Rényi model (ER model) [25] and the Barabdsi-Albert model
(BA model) [26] as network models. Here, the link gener-
ation probability in the ER model is set to 0.05, and the
number of nodes in the initial state in the BA model is set to
three. Figures 5 and 6 illustrate the corresponding network
structures. The red nodes represent leader nodes, the blue
nodes represent follower nodes, and the yellow nodes rep-
resent the other nodes. The number of leader and follower
nodes in Fig.5 is 2 and 19, respectively, and in Fig. 6 it is
2 and 44, respectively. In the upper panels of Figs.5 and
6, leaders are the nodes with the largest or smallest opinion
values, and followers are selected randomly. On the other
hand, in the lower panels of Figs.5 and 6, leaders are the
nodes with the first or second highest degree, and followers
are the nodes adjacent to the leader. We apply the model to
each network and calculate the indices P* and m,, from the
network after structure changes. As an experimental condi-
tion, the simulation time for the model, ¢, was set to 3000.
Also, from (6), the threshold used to calculate the indices
was set at 8 = 10.

Figures 7 and 8 show index, P*, of polarization and
the number, m,,, of polarized groups for various ¢ values,
using the networks shown in the upper and lower panels of
Fig. 5 as the initial conditions, respectively. We conducted
the simulation 100 times for each value of ¢ by changing the
seed used in random node selection at each time step, so P*
and m,, in the figures are averages. Note that the error bars
represent the 95% confidence interval.

Focusing on the averages of P* in Figs. 7 and 8, we can
see that P* takes larger values as parameter ¢ decreases. As
mentioned in Sect. 2, a smaller value of ¢ means that users
with similar opinions are more likely to connect as a result
of the network structure change. Also, we design the model
of polarization so that the links between nodes with different
opinions and interests are disconnected. Therefore, these
results indicate that in the random network generated by the
ER model, polarization is more likely to occur due to these
two factors, regardless of how the leader and follower nodes
are defined.

Next, focusing on the averages of m,, in Figs.7 and §,
we can see that decreasing ¢ increases the value of m,,. This
indicates that the tendency for users with similar opinions
to connect contributes to forming many polarized groups in
the network. Here, for ¢ = 0 to 0.3, the averages of m,, are
greater than two, even though the number of leader nodes
is two. It means that groups without leader nodes are likely
to appear in the network. We believe that the reason is the
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Leader nodes have the largest or smallest opinion values;
follower nodes are selected randomly

Leader nodes have the largest or smallest opinion values;
follower nodes are selected randomly

Leader nodes have the first or second highest degree;
follower nodes are adjacent to the leader

Fig.5 Unweighted undirected graph generated by the ER model (N =
102).

degree of the leader nodes in their initial state. When the
leaders are the nodes with the largest or smallest opinion
values, the smaller ¢ is, the more difficult it is for them to
acquire more links because their opinion values are far from
those of the other nodes. Also, when the leaders are the
nodes with large degree, their degree is at most one-tenth of
the total number of nodes in the network. Even if a group
including the leader is formed, its scale is not expected to be
very large. Therefore, there are many nodes that do not form
a group with a leader, and the number of polarized groups
without a leader will increase.

To further understand the influence of the character-
istics of the nodes introduced in our model, we also sim-
ulated the situation in which leaders change their opinions
(Appendix). The simulation results indicate that whether the
leaders change their opinions or not is not an important factor
in polarization. Thus, we reiterate our assumption that the
leader holds a consistent opinion. In the experiments using
the network generated by the BA model, we do so under the
condition that leaders keep their opinions unchanged.

Figures 9 and 10 show index P* of polarization and the
number m,, of polarized groups for various ¢ values, using
the networks shown in the upper and lower panels of Fig. 6 as

Leader nodes have the first or second highest degree;
follower nodes are adjacent to the leader

Fig.6  Unweighted undirected graph generated by the BA model (N =
102).

initial conditions, respectively. The number of simulations
and the meaning of the error bars are the same as those
mentioned above.

Figure 9 indicates that decreasing ¢ increases P* and
my. It is similar to the results of the network generated
by the ER model. Therefore, under this initial state, we
can confirm that the tendency to connect users with similar
opinions also contributes to polarization in the scale-free
network generated by the BA model.

However, focusing on the averages of P* in Fig. 10, we
can see that the value of P* is small regardless of the value of
¢. This result is very different from the characteristic men-
tioned above. To discuss the reason for this, let us consider
the networks in the initial state. In the network generated by
the BA model, nodes with a large degree tend to connect, so
the opinion values of the leader nodes are close to each other.
In addition, the followers determined as the adjacent nodes
of the leaders have the constraint of keeping their links with
the leaders, so their opinion values tend to approach that of
the leader. Therefore, we believe that index P* of polariza-
tion is small due to the formation of a large-scale group that
includes two leader nodes and many follower nodes.

Focusing on the averages of m,, in Fig. 10, we can see
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Fig.11  Network and the components of Fiedler vector in ascending order
(r = 3000, ¢ =0, P* =0.176).

that decreasing ¢ increases m,. However, comparing the
averages of m,, shown in Figs. 7-10, we find that those of
Fig. 10 are the smallest overall among those of the others.
We think that this is due to the existence of the large-scale
group discussed in the previous paragraph. The formation
of a large-scale group means that the number of nodes not
included in it tends to be small. Therefore, it is hard for those
nodes to form a new group.

Here, we describe further experimental results, focus-
ing on the scale-free network generated by the BA model.
To facilitate understanding of the relation among index P*
of polarization, the network topology, and the distribution
of opinion values, we show some examples of them after
structure change.

Figure 11 shows the network and the components of
the Fiedler vector in ascending order at + = 3000 with
P* = 0.176. For the experimental conditions, we used the
network shown in the upper panel of Fig. 6 as the initial con-
dition with parameter ¢ = 0. These figures indicate that there
are multiple community structures in the network and that
the components of the Fiedler vector distribute in a staircase
pattern with several peaks. This result shows that a polarized
structure appears in the network even if P* is around 0.15,
although it is far from the complete polarization represented
by P* = 1. It is also notable that leader nodes do not belong
to any community in the network. The reason may be that it
is hard for the leaders to acquire links because random link
connections cannot occur under this experimental condition.

0.5

-
o
)
9]
[
>
.
2
©
2
(T
ke
- /
c
(1)
c
o
Q
E
o
Q
(]
=
=]

04 -

03

0.2 @

0.1

01 *®

-0.2

Fig.12  Network and the components of Fiedler vector in ascending order
(t = 3000, ¢ = 1, P* = 0.025).

Nevertheless, such a polarized situation occurs regardless
of leaders because each node connects with nodes that have
similar opinions and blocks nodes that have different opin-
ions.

Figure 12 shows the network and the components of
the Fiedler vector in ascending order at + = 3000 with
P* = 0.025. For the experimental conditions, we used the
network shown in the upper panel of Fig. 6 as the initial con-
dition with parameter ¢ = 1. Under this condition, there is
no community structure in the network, and multiple peaks
do not appear in the distribution of the components of the
Fiedler vector. In this case, even if it is determined by the
calculation of the index that there are several groups in the
network, the number of nodes among them is highly unbal-
anced. Therefore, the value of P* is smaller than that of
Fig. 11.

Finally, to understand how polarization strength
changes with time, we investigate the time evolution of po-
larization index P* and the number of polarized groups, m,,.
Figure 13 shows the simple moving averages of the time evo-
Iution of P* and m,, for parameter ¢ using the upper panel
of Fig. 6 as the initial condition. From these figures, we can
see that P* and m,, decrease regardless of the value of ¢ at
the beginning, but then increase as the value of ¢ decreases.
That is, we can assume that the process of polarization be-
gins with the formation of a large-scale group, which then
gradually divides into multiple groups. Also, under ¢ = 0,
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where there is no randomness in the link connection, the
values of P* and m,, are stable in the latter half of the simu-
lation time. On the other hand, under ¢ = 0.1 to 0.3, where
random link connections occasionally occur, they seem to
have increasing tendencies even at + = 3000. These results
indicate that random link connections may have the effect of
slowing or stopping the progression of polarization.

Figure 14 shows the simple moving averages of the
time evolution of P* and m,, for parameter ¢ using the lower
panel of Fig.6 as the initial condition. Focusing on the
time evolution of P*, it hardly increases after decreasing
regardless of the value of ¢. The reason seems that the
constraint that the link between a leader and a follower is
never disconnected prevents the division of the large-scale
group. However, since the other nodes do not have such a
constraint, they can form small groups. It may be related to
the result that m,, increases with time when ¢ is small.

5. Conclusion

In this paper, we use the components of the Fiedler vector
in spectral graph theory to propose a model of social polar-
ization in which user behavior and network structure change
while influencing each other. We also proposed an index that
can evaluate social polarization quantitatively. Our model
reflects the non-local effects of user behavior, and the char-
acteristics of users on OSNs. Simulations revealed that so-
cial polarization is more likely to occur due to the synergistic
effect of connecting users who have similar opinions with at-
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tenuation of relationships between users who have different
opinions. We also found that when the hubs in the scale-free
network are leaders and the users around them are followers,
a large-scale group including them can readily form as the
network structure changes. Meanwhile, we found that in-
creasing the number of interactions that are independent of
user opinion values mitigated the polarization regardless of
the initial network structure and how leaders and followers
were determined, which is seen as an important finding for
developing countermeasures to polarization.

In future work, we will examine the impact of the initial
network structure on polarization in more detail. We will
also consider extending the applicability of the model so
that it can handle weighted undirected graphs and directed
graphs.
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Appendix: Experimental Results in the Case Where the

Leaders’ Opinions are Variable

In the main text, we assumed that leaders have consistent
opinions and that the opinion values of the leader nodes
remain unchanged regardless of network structure changes.
However, in some cases, leaders may pander to the opinions
of their followers and change their own opinions. In this
section, we show some simulation results when the opinion
values of all nodes, including leader nodes, are regarded as
components of the Fiedler vector.

Figure A-1 shows the results when the upper panel
of Fig.5 is the initial condition and the leaders’ opinions
are variable. Compared to the results when the leader’s
opinion is invariant (Fig.7), there are slight differences in
the averages of index P* of polarization and the number
m,, of polarized groups, but the tendency that they increase
as ¢ decreases remains. These results imply that whether
networks and opinions become polarized or not is mostly
independent of whether leaders change their opinions or not.
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Fig.A-1  Average of P* and m,, for parameter ¢ in the case where the

leaders’ opinions are variable (initial network: the upper panel of Fig. 5).
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