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PAPER
Revealing of the Underlying Mechanism of Different Node
Centralities Based on Oscillation Dynamics on Networks

Chisa TAKANO†a) and Masaki AIDA††b), Members

SUMMARY In recent years, with the rapid development of the Internet
and cloud computing, an enormous amount of information is exchanged on
various social networking services. In order to handle and maintain such a
mountain of information properly by limited resources in the network, it is
very important to comprehend the dynamics for propagation of information
or activity on the social network. One of many indices used by social net-
work analysis which investigates the network structure is “node centrality”.
A common characteristic of conventional node centralities is that it depends
on the topological structure of network and the value of node centrality
does not change unless the topology changes. The network dynamics is
generated by interaction between users whose strength is asymmetric in
general. Network structure reflecting the asymmetric interaction between
users is modeled by a directed graph, and it is described by an asymmetric
matrix in matrix-based network model. In this paper, we showed an oscil-
lation model for describing dynamics on networks generated from a certain
kind of asymmetric interaction between nodes by using a symmetric ma-
trix. Moreover, we propose a new extended index of well-known two node
centralities based on the oscillation model. In addition, we show that the
proposed index can describe various aspect of node centrality that considers
not only the topological structure of the network, but also asymmetry of
links, the distribution of source node of activity, and temporal evolution of
activity propagation by properly assigning the weight of each link. The pro-
posed model is regarded as the fundamental framework for different node
centralities.
key words: oscillation dynamics, node centrality, social network analysis

1. Introduction

Recently, the survey “Digital in 2016” [1] for digital, social
and mobile usage was reported by the social media consult-
ing company “We Are Social”. According to the survey, the
number of social media users in the world is 2.31 billion,
and it is expected that its number will further increase in
the future. While an enormous amount of information is ex-
changed bymany billion users throughmajor social network-
ing services (SNS), including Facebook, Twitter, Google+
and Instagram, information exchange manner between users
heavily depends on the structure of actual social network of
users. In such a situation, social network analysis which is
the process of investigating the structure of social networks
has been attracted attention, and dynamics for propagation
of information or activity on the social network is an inter-
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Fig. 1 Examples of node centralities.

esting research object [2]–[4]. For social network analysis
based on graph theory, various indices have been applied
in order to describe the characteristics of networks: graph
diameter/radius, average path length and node density [5],
degree distribution [6], [7], cluster coefficient [8]–[10], and
various node centralities [11]–[14]. Most of these indices
are decided by the topological structure of the network, but
some of them are strongly related to user dynamics reflecting
the utilization state of the network. In this paper, we focus
on node centralities which are such indices.

Node centralities are indices that express the strength
of importance of node. Figure 1 shows examples of typical
node centrality: the degree centrality and the betweenness
centrality. The black nodes have the highest degree cen-
trality, that is, their node degree is high and they strongly
contribute propagation on the network. The gray node has
the highest betweenness centrality, that is, a lot of short-
est paths between nodes are passing through the node and
it is the essential node to relay. In this way, by choosing
different measures, we can define different node centrality.
Note that the node centrality is determined by the topological
structure of the network. For example, it is inappropriate to
judge that betweenness centrality measure of the gray node
and degree centrality measure of the black node in the right
subnetwork are high in the situation where the communica-
tion is performed only in the left subnetwork in the figure,
because the node centrality does not reflect the utilization
state of the network. In other words, the conventional node
centrality is an index assuming the uniform communication
on a given network structure. In general, the information
exchange in social networks and the utilization state in in-
formation networks are not uniformed spatially, and origin
nodes of information propagation providing new topics are
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unevenly distributed. Also, it is unlikely that a situation
where all nodes communicate directly. In view of these
facts, it is significant for practical purposes to extend the
node centrality reflecting the utilization state of the network.

When a network structure is expressed algebraically
by using a matrix, node-specific property and link-specific
property are represented by the diagonal components and the
non-diagonal components of the matrix, respectively. For
this reason, an undirected/directed network is represented
by a symmetric/asymmetric matrix associated with the net-
work. In spectral graph theory, the characteristics of network
structure is analyzed by studying eigenvalues and eigenvec-
tors of the Laplacian matrix which represents the structure
of the associated network [15]–[17]. The fact that the Lapla-
cian matrix is symmetric is crucial in process to investigate
its eigenvalues and eigenvectors, because symmetric matri-
ces always can be diagonalized [18], [19]. However, various
dynamics on social networks is generated as a result of the
interaction between nodes (humans, computers and contents,
etc.), and the strength of such interaction depends on the di-
rection of links in general, that is, it has asymmetric link
structure.

For problems mentioned above, in [20], [21], we fo-
cused on some types of link asymmetry that is reducible to
represent as the characteristic of the node, and represents the
structure of a directed graph with a symmetric matrix. We
call the network having this type of link asymmetry as the
symmetrizable directed network. Moreover, we considered
themodel of oscillation dynamics on symmetrizable directed
networks and analyzed oscillation dynamics on symmetriz-
able directed networks which describes the propagation of
some activities on the networks through the networks. In
[22], we proposed a new index that is an extension of the
conventional node centralities (degree and betweenness cen-
tralities). Unlike conventional node centralities, our pro-
posed index can reflect various network situations including
topological structure of network, asymmetry of links, the dis-
tribution of source node of activity, and temporal evolution
of activity propagation. These characteristics have practi-
cal advantages. Note that the simulation evaluation in [22]
focuses on the simple network model which has undirected
and non-weighted links. In this paper, we discuss generally
extension of node centralities based on the oscillation model
on symmetrizable directed networks. In addition, we show
that our proposed index can describe various node centrali-
ties by properly assigning the weight of each link, assuming
the directed and weighted network model through simula-
tion experiments. Moreover, we show that the extension of
our proposed index can express the temporal evolution of
activity propagation and the damped case with time.

The rest of this paper is organized as follows: First,
in Sect. 2, we show the outlines of some conventional node
centralities and take a brief look at applications of them for
the related work. For preliminary of our study, in Sect. 3,
after definition of the Laplacian matrix for symmetrizable
directed networks, we introduce the scaled Laplacian matrix
for describing asymmetric node interactions by a symmetric

matrix [20], [21]. In Sect. 4, we analyze the solutions of the
equation of motion for non-damped and damped oscillation
model that can describe dynamics on networks. In addition,
we mathematically clarify the relation between the proposed
indices by oscillation model and several node centralities
in Sect. 5. As demonstration, we compare the proposed
indices by the oscillation model with several conventional
node centralities by the simulation and show the validity
of the proposed model. In Sect. 6, we extend the proposed
index so as to describe the temporal evolution of activity
propagation and express the damped dynamics on networks.
Finally, we conclude this paper in Sect. 7.

2. Related Works for Node Centralities

In this section, we outline some conventional node centrali-
ties and show application examples to control and manage-
ment of information networks.

Node centralities are indices of which nodes are more
central than the others. The idea of first classic centralities
as applied to social network and human communication was
introduced by Bavelas [23], [24]. Moreover, Freeman [11]
categorized three measures of node centralities based on
these three features (it has more links, it can reach all the
others more quickly, and it controls the flow between the
others) as follows:

• Degree centrality : It is the simplestmeasure of the node
centralities and is defined as the number of links that
a node has [23]. Degree centrality has generally been
extended to the sum of link weights for the weighted
networks which has the weighted directed links [26]–
[29].

• Closeness centrality : Closeness was defined in con-
nected graph by [23]. It is a centrality measure which
is calculated as the inverse of the sum (or average) of
the length of the shortest paths between the node and
all other nodes [30]. For disconnected network, the
extension of closeness has been proposed which uses
the harmonic mean of distances rather than the arith-
metic mean [29], [31], [32]. Moreover, the directed and
weighted network was studied by [27], [33].

• Betweenness centrality : Betweenness centrality is de-
fined based on the number of shortest paths from all
vertices to all others that pass through that node [23].
The importance of this conception of node centrality is
in the potential of a node for control of information flow
in the network. It is similar to the stress centrality [34]
defined as the number of shortest paths but provides a
more informative centrality index. Generalization of
betweenness centrality to directed graphs and weighted
graphs is shown in [29], [35]. Moreover, [36] proposed
a new algorithm for calculating betweenness faster.

One of node centralities other than the above Freeman’s
categorized measures is the eigenvector centrality [37] based
on a eigenvector for the greatest eigenvalue of the adjacency
matrix. Bonacich power centrality [38] and PageRank [39]
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can be viewed as modifications of the eigenvector centrality.
For applications of node centralities, the concepts of many
proposed node centralities are used by identifying the most
influential (key) persons in a social network [40], [41] and
super-spreaders of disease [42], [43] as well as proposal of
control algorithm of infrastructures in information network
(e.g. ad hoc network and sensor network) [44]–[47].

3. Symmetric Scaled Laplacian Matrix for Describing
the Link Asymmetry

3.1 Definition of the Laplacian Matrix

In graph theory, network structure is frequently expressed
by a matrix. Let us consider a loop-free directed graph
G = G(V, E) with n nodes: V = {1, 2, . . . , n} is the set of
nodes and E is the set of directed links. The directed link
from node i to node j is expressed by (i → j) ∈ E. In
addition, let the link weight for link (i → j) be wi j > 0.
Then, we define the n × n square matrix A = [Ai j] as
follows:

Ai j :=
{
wi j ((i → j) ∈ E),
0 ((i → j) < E). (1)

This matrix represents link presence and its weights, and is
called the (weighted) adjacency matrix. If wi j = w ji for all i
and j, G is a undirected graph, andA is a symmetric matrix.
The adjacency matrix can be used to investigate the network
structure algebraically. If wi j = 1 for all i and j, the (i, j)
component ofAk shows the number of paths with the length
of k from node i to node j.

Next, we define the weighted out-degree di of node i
(i = 1, . . . , n) as

di :=
∑
j∈∂i

wi j, (2)

where ∂i denotes the set of nodes adjacent to node i. Degree
matrixD of the weighted out-degree is defined as

D := diag(d1, d2, . . . , dn).

If all link weights are wi j = 1, di denotes out-degree, i.e. the
number of outgoing links from node i.

Based on the above preparation, we define the Laplacian
matrix L of the directed graph G as follows:

L :=D −A. (3)

An example of the Laplacianmatrix for an asymmetric graph
is shown in Fig. 2.

3.2 Symmetrization of Laplacian Matrix and the Scaled
Laplacian Matrix

Although the Laplacian matrix L for directed graph is gen-
erally the asymmetric matrix, we can classify the link asym-
metry into two types. Figure 3 shows typical examples of

Fig. 2 Example of Laplacian matrix.

Fig. 3 Typical examples of asymmetric interaction between nodes.

link asymmetry. (a) shows a hub type relation, for example
the relation of a major blogger and its followers. The link
asymmetry in (a) can be expressed by the node characteristic
which is the strength of node. The node characteristic means
a numerical representation of the strength of node and is a
consistent value. On the other hand, (b) shows a cyclic rela-
tion like rock-paper-scissors. In this case, it is not possible
to define the consistent value of the strength of nodes (it is
unknown which node is the strongest/weakest). Therefore,
the relation of (b) is defined by not the node characteristic but
the pure link characteristic. Let us consider the conditions
that the asymmetric relation is classified in (a) which can be
expressed by using node characteristics.

The Laplacian matrix L has the left eigenvector tm
associated with the left eigenvalue 0, that is,

tmL = 0. (4)

For each component mi of the left eigenvector tm =

(m1, . . . , mn), we assume the following condition:

mi wi j = m j w ji (≡ ki j ), (5)

where mi > 0. If the condition (5) is satisfied, the network is
classified into the type (a) in Fig. 3 and the link asymmetry
in directed network can be reduced to node characteristics
in an undirected graph. We call a network satisfying (5) as
a symmetrizable directed network. Here, mi represents the
node characteristic (node strength) of the node i, and wi j

represents the link weight from node i to node j in a directed
network. The physical meaning of this condition (5) will be
discussed by the oscillation model for describing dynamics
on networks in the next section.

For symmetrizable directed netwrorks, the link asym-
metry ofL can be expressed by using a symmetric Laplacian
matrix, and the procedure is as follows. First, we introduce
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Fig. 4 Example of symmetrization of Laplacian matrix.

a symmetric Laplacian matrix L as L := D − A for an undi-
rected network as follows: The adjacency matrix A = [Ai j]
is defined as

Ai j :=
{

ki j ((i, j) ∈ E),
0 ((i, j) < E), (6)

and the degree matrix D is expressed as

D = diag *.
,

n∑
j=1

A1j,

n∑
j=1

A2j, . . . ,

n∑
j=1

Anj
+/
-
.

Since ki j = k ji , L is a symmetric Laplacian matrix for
a certain undirected graph. By using L, the asymmetric
Laplacian matrix L is expressed as

L = M−1 L, (7)

where the scaling factors M of nodes is defined as M :=
diag(m1, m2, . . . , mn) to reduce the link asymmetry to the
characteristics of the node. Figure 4 shows a simple example
of the procedure which leads to (7).

Next, we define the scaled Laplacian matrix as

S := M−1/2 L M−1/2. (8)

Note that S is a symmetric matrix as well as L.
By multiplying M1/2 to the right eigenvalue equation

of L,

L x = λ x

from the left, we have

M1/2
L x = S (M1/2x) = λ (M1/2x). (9)

This means that the scaled Laplacian matrix S has the same
eigenvalues of L and its eigenvector is expressed as y :=
M1/2 x. Since the quadratic form of S is

ty S y =
∑

(i, j)∈E

ki j

(
yi
√

mi
−

yj
√m j

)2
≥ 0,

the eigenvalues ofS are nonnegative. We sort the eigenvalues
in ascending order as 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1. We
can choose the eigenbasis vµ (µ = 0, 1, . . . , n − 1) as the
eigenvector of S with length of 1 associated with λµ, which
satisfy

S vµ = λµ vµ, vµ · vν = δµν, (10)

where δµν denotes the Kronecker delta.

4. Oscillation Model on Networks Based on Asymmet-
ric Interaction between Nodes

In this section, we consider the solution of the equation of
motion that describes oscillation phenomena on networks.

4.1 Minimal Model Describing Nodes’ Interaction

Let us consider the information propagation targeted by the
oscillation model. In this paper, we do not propose models
that have the characteristics of specific information propaga-
tion, but pursue the so-called minimal model. The minimal
model is an universal model as simplest as possible.

The minimal model is determined by considering not
only a rule that expresses the user’s state but also some
rules that describe the interaction between users, as follows:
The state of each user is represented by a one-dimensional
parameter. Although multi-dimensional parameters may be
required to describe the user’s state, we select the simplest
model that the user’s state affecting the interaction between
users can be represented by one-dimensional parameter. On
the other hand, as rules for interaction between users, (1)
if the difference in state between the user and the adjacent
user is 0, no interaction occurs (2) restoring-power acts so
that the difference in state between users becomes small
(3) the strength of the restoring-force is represented by a
monotonically increasing function of the difference against
state between users. We do not assume that the user’s state is
the observable quantity for the model. The interaction acts
according to the state of the user and the adjacent user, and no
interaction occurs when all users are in the same state. The
oscillation model shown in Sect. 4.2 is linearized so that the
strength of restoring-force is proportional to the difference
in state between users in the minimal model. Let us consider
the model linearization by using the well-known Ohm’s law
as an example.

Figure 5 is an example of the characteristic of the current
I when the voltage V is applied to the resistance. In gen-
eral, no current flows when the voltage is 0, and the current
monotonically increases as the voltage increases. However,
there is no proportional relationship between them. This is
because the heat generation of the resistance prevents the
current from flowing. However, there is an approximately
proportional relationship between the current and the voltage
when the voltage is not large, and this relationship is known
as Ohm’s law. This law means a first order approximation
by Taylor expansion around V = 0 as a function of current I
for voltage V .
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Fig. 5 Example of the characteristic of the current I when the voltageV
is applied to the resistance.

The idea of Ohm’s law is a good example to explain
the linear approximation of the strength of interaction be-
tween users. Although the strength of interaction between
users may be described by using a nonlinear function of
the difference in the states of users, a first order approxima-
tion is possible when the difference in state between users
is not large. Therefore, it was found that the linear interac-
tion model is an extremely universal model. Of course, the
model does not hold the linearity when the characteristic of
nonlinearity is very strong, but nonlinear correction can be
considered based on a linear model. Thus, the oscillation
model expressing the interaction between users is intended
not to describe a specific information propagation but to de-
scribe the common features in wide range of user interaction
models, and the pursuit of the minimal model makes this
possible.

Note that there is no practical meaning unless this min-
imal model is linked with observable information at all. In
the oscillation model derived from the minimal model, the
usefulness of this minimal model is indicated by the fact
that the oscillation energy of nodes can reproduce the con-
cept of the conventional degree centrality and betweenness
centrality. Therefore, all the propagation of activity on a
symmetrizable directed network which has been discussed
using the conventional degree centrality and betweenness
centrality is understood through the oscillation model.

4.2 Non-Damped Oscillation Model on Networks

Based on the idea of the minimal model in the previous
section, the equation of motion for xi which is the state of
node i can be obtained by the linear restoring-force between
nodes as follows:

d2xi
dt2 = −

∑
j∈∂i

wi j (xi − x j ), (11)

where wi j is a proportionality coefficient indicating the
strength of interaction between node i and node j, and de-
notes the weight of a directed graph.

Here, by using the vector x = (x1, . . . , xn), (11) can
be expressed as

d2x(t)
dt2 = −L x(t). (12)

The equation of motion (12) reflects the asymmetric char-
acteristics of links described by an asymmetric Laplacian
matrix L.

If the directed graph can be symmetrized (that is, (5)
is satisfied), we have the following wave equation as the
equation of motion

M
d2x(t)

dt2 = −L x(t), (13)

where L is a symmetric Laplacian matrix of the undirected
graph and the scaling factor M . The model represented
by (13) is equivalent to the following dynamic oscillation
model.

Let the weight xi of node i be the displacement from
the equilibrium point, and let the restoring-force be propor-
tional to the difference between the displacements of node i
and its adjacent node. The displacement of the node is a one-
dimensional parameter representing the user’s state, and the
equilibrium point is the origin of the coordinates for digitiz-
ing the state of the user and can be decided arbitrarily. Since
only the difference in user’s state affects the interaction, the
position of the origin has no essential meaning. Figure 6
shows a representative image of our oscillation model. To
represent diverse oscillating behavior, we allow the spring
constant of each link to be different and the mass of each
node to also be different. Let a spring constant for the link
between node i and node j be the link weight ki j > 0. In
addition, we assign mass mi > 0 to each node i. The node
characteristic mi in (5) corresponds to themass of node in the
oscillation model. In addition the condition (5) represents
Newton’s third law (about the law of action and its reaction).

The displacement of the node is generally a complex-
valued function as a result of solving (12) or (13) and is
not an amount that can be observed directly. However, the
oscillation energy obtained by squaring the displacement
leads to the concept of the traditional graph theory as the node
centrality. Such aspects also appear in quantum mechanics.
The wave function representing the state of the system in
quantum mechanics is generally a complex-valued function
and is not observable, but the squared amount is associated
with observable quantities.

By introducing the vector y(t), as

y(t) = M1/2 x(t),

the equation of motion (12) can be expressed as

d2y(t)
dt2 = −S y(t). (14)

Thus, we can describe the equation of motion for the os-
cillation dynamics on networks using the symmetric matrix
S.

In order to solve the equation of motion (14), we expand
y(t) as
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Fig. 6 Representative Image of the Oscillation Model on Symmetrizable
Directed Networks.

y(t) =
n−1∑
µ=0

aµ (t) vµ, (15)

by the eigenbasis vµ of S. By substituting (15) into (14), we
obtain n independent equations ofmotion for each oscillation
mode µ as

d2aµ (t)
dt2 = −λµ aµ (t),

and the solution is

aµ (t) = cµ e±i (ωµ t+θµ ), (16)

where cµ is a constant, ωµ =
√
λµ, i =

√
−1 and θµ denotes

phase for the oscillation model. From the above, we have the
solution of (14) as

y(t) =
n−1∑
µ=0

cµ e±i (ωµ t+θµ ) vµ . (17)

In addition, the solution of (12) is

x(t) = M−1/2 *.
,

n−1∑
µ=0

cµ e±i (ωµ t+θµ ) vµ
+/
-
. (18)

4.3 Damped Oscillation Model on Networks

Since an oscillation is damped with time in actual situation,
we should consider the damped oscillation model. Since
the damping force is usually proportional to the velocity of
node and its mass, the equation of motion for the damped
oscillation can be expressed as

M
d2x(t)

dt2 + M γ
dx(t)

dt
= −L x(t), (19)

where γ > 0 is a constant called the damping coefficient.
By using the vector y = M1/2 x, we can symmetrize the
equation of motion as

d2y(t)
dt2 + γ

dy(t)
dt
= −S y(t). (20)

By applying the similar procedure using (15), we obtain

n independent equations of motion for each oscillation mode
µ, as

d2aµ (t)
dt2 + γ

daµ (t)
dt

+ ω2
µ = 0. (21)

In order to solve (21), let us consider the characteristic equa-
tion of (21):

α2 + γα + ω2
µ = 0. (22)

The solutions of the characteristic equation are obtained as

α± = −(γ/2) ±
√

(γ/2)2 − ω2
µ (double-sign corresponds).

The solutions of the equation of motion (21) are classified
into three categories, depending on the solution of (22), as
follows. In case that α± are complex roots ((γ/2)2 < ω2

µ),
the solution describes damped oscillations,

aµ (t) = aµ (0) e−(γ/2)t e±i
√
ω2

µ−(γ/2)2t . (23)

In case that α± are double roots ((γ/2)2 = ω2
µ), the solution

describes the critical damping,

aµ (t) = (aµ (0) + cµ t) e−(γ/2)t, (24)

where cµ is a constant. Finally, in case that α± are two
distinct real (negative) roots ((γ/2)2 > ω2

µ), the solution
describes overdamping,

aµ (t) = c+µ eα+t + c−µ eα−t, (25)

where c+µ and c−µ are constants.
Therefore, we obtain the solution of the equation of

motion (19) for the damped oscillation as

x(t) = M−1/2 *.
,

n−1∑
µ=0

aµ (t) vµ
+/
-
.

5. Oscillation Model and Node Centralities

In this section, we consider actual meaning of oscillation
models on networks proposed in the previous section. First,
we show the relationship between oscillation energy for each
node and the node centrality, and propose the new node cen-
trality index by using the oscillation energy. The proposed
index can reproduce the conventional degree centrality and
betweenness centrality as simple and special cases.

It would be inappropriate to suppose that the concept
of the node displacement is unnecessary and the model can
be constructed only with node centrality, even though the
node centrality can be observed but the displacement of the
node cannot be observed. In generalizing the node centrality
as the importance of the node and considering its temporal
evolution and propagation on the network, the oscillation
phenomenon based on the displacement of node is neces-
sary as the underlying structure. In addition, by consider-
ing the oscillation phenomenon, it is possible to understand
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the different centralities (degree centrality and betweenness
centrality) in the same framework and to derive extended
concept of node centrality reflecting the utilization state of
the network.

5.1 Oscillation Energy and Degree Centrality

Let us consider the behavior of the solution (18) for non-
damped oscillation on networks. The solution (18) is a
complex valued function, and so it is difficult to interpret as
an actual quantity that can be directly observed. Therefore, it
is desired to make a non-negative valued index that describes
the strength of activity of each node on networks.

As the first step, we introduce the oscillation energy.
Since the oscillation energy of a simple harmonic oscillator
for node mass m, amplitude A and angular frequency ω is
1
2 mω2 A2, the oscillation energy Ei for node i is expressed
as

Ei =
1
2

mi

n−1∑
µ=0

ω2
µ |aµ (t) |2

(
vµ (i)
√

mi

)2

=
1
2

n−1∑
µ=0

ω2
µ |aµ (t) |2 (vµ (i))2, (26)

where vµ =
t(vµ (1), . . . , vµ (n)). Note that vµ (i) is a real

number because S is a real symmetric matrix.
As the initial condition of the wave equation (12), let us

give the displacement only at a certain node. We define the
node as a source node of activity. First of all, let us consider
the situation that the source node of activity is chosen at
random. In this case, all the oscillation modes contribute at
the same strength. If we choose |aµ (t) | =

√
2 for all µ, we

have

Ei =

n−1∑
µ=0

λµ (vµ (i))2 =

∑
j∈∂i ki j
mi

= di . (27)

The reason of the second equality of (27) is justified by
the following discussion: S can be diagonalized by using
the orthogonal matrix P = (v0, . . . , vn−1) as Λ = tP S P,
where Λ = diag(λ0, . . . , λn−1). By using S = PΛ tP, we
can recognized that Ei is the ith diagonal component of S.
Therefore, Ei gives the degree centrality of node i.

In order to demonstrate the actual meaning of the pro-
posed index, we evaluate the oscillation energy Ei for node
i using the network model shown in Fig. 7.

In this paper, we show that it is possible to derive the ex-
tended concept of node centrality from the oscillation model
on the symmetrizable directed network. The property that
the oscillation energy of each node results in degree cen-
trality and betweenness centrality under specific conditions
is given mathematically in the symmetrizable directed net-
work. Therefore, the above property is established in “any”
symmetrizable directed network. This paper gives some
demonstrations by using a specific network model, but it is

Fig. 7 Network model (undirected graph).

Fig. 8 Oscillation energy for each node in undirected graph (M = I ,
M = D2).

mathematically guaranteed that similar results can be ob-
tained even for other symmetrizable directed networks. For
example, the large-scale property and the scale free property
which the social network has do not affect the evaluation re-
sults in this paper. Note that general directed networks that
do not satisfy (5) are not considered, since this paper focuses
on symmetrizable directed networks. The general directed
network can also be expressed as an oscillation model, but it
corresponds to the oscillation phenomenon which does not
satisfyNewton’s third law. In this case, the oscillation energy
of the whole network can be defined, but it is generally im-
possible to distribute it to the oscillation energy of each node.
The divergence of oscillation energy has been analyzed and
discussed as a flaming phenomena in networks [48], [49].

Figure 8 shows the evaluation results of the oscillation
energy Ei in case that the weight of all links wi j = 1, and
|aµ (t) | =

√
2 for all oscillation modes µ. The results are

using mass matrix M = I (left) and M = D2 (right). Fig-
ure 8(a) and (b) correspond to the case that the interaction
between nodes is symmetric (M = I ), and an example of
asymmetric node interaction (M = D2), respectively. There-
fore, Fig. 8(b) can be considered as an extension of the degree
centrality for asymmetric interaction between nodes.

5.2 Oscillation Energy and Betweenness Centrality

The betweenness centrality is a well-known node centrality.
While [22] has stated the betweenness centrality for an undi-
rected graph, we explain the betweenness centrality for a
directed graph to help easy understanding of characteristics
of node centralities in the following subsections.

Let the number of shortest paths from node j to node k
be σ jk , and the number of those paths passing through the
node i beσ jk (i) for the network which has the directed links.
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The betweenness centrality Cbt(i) for node i is defined as

Cbt(i) :=
∑

j, k∈V\{i }

σ jk (i)
σ jk

. (28)

The normalized betweenness centrality C̄bt(i) is defined as

C̄bt(i) :=
Cbt(i)

(n − 1) (n − 2)
. (29)

The physical meaning of C̄bt(i) is the ratio of the number of
shortest paths including node i to the number of permutations
of node pairs in V \{i}, that is n−1P2.

Here, let us set the link weight wi j as the number of the
shortest paths passing through the link (i → j). Then the
(weighted) degree of node i can be expressed as

di =
∑
j∈∂i

wi j =
∑

j, k∈V\{i }

σ jk (i)
σ jk

+
∑

k∈V\{i }

σik (i)
σik

, (30)

where V\{i} is the set of nodes excluding node i. The second
equality of (30) means the sum of the number of shortest
paths passing through node i and shortest paths started from
node i. Since the number of shortest paths that are terminated
at node i is n − 1, we have

di = Cbt(i) + (n − 1). (31)

Let us consider the situation that the source node of
activity is chosen at random. In this case, all the oscillation
modes contribute at the same strength. Ifwe choose |aµ (t) | =
√

2 for all µ and mi = 1 in (26), we have

Ei = di = Cbt(i) + (n − 1). (32)

If there is a node that any shortest paths never pass through,

Emin := min
i∈V

Ei = n − 1,

and that is to say that the difference Ei − Emin is equal to the
betweenness centrality.

5.3 Typical Examples of the Correspondence between Os-
cillation Energy

In this subsection, we take note of the betweenness centrality
for the simulation evaluation, and we clarify that the oscil-
lation energy for the oscillation model corresponds to these
centralities by properly assigning link weight between nodes
as shown in Sect. 5.2.

Let us consider the directed and weighted graph for
the network model used in the simulation evaluation. The
network model (Fig. 9) has 23 nodes and several weighted
links. The numerical character in each circle and that of
beside each link denote node ID and the weight of each
link, respectively. For example, the weight of the directed
link from node 1 to node 2 is 1.0. We can reduce the link
asymmetry in directed network to node characteristics in an
undirected graph as shown in Sect. 3.2. Incidentally, Fig. 10

Fig. 9 Network model with weighted directed links.

Fig. 10 Undirected network graph where the link asymmetry in weighted
directed network is reduced to node characteristics.

Fig. 11 Proposed indexEi−(n−1) and the betweenness centralityCbt (i)
(γ = 0).

is the undirected network which is derived from the weighted
directed network Fig. 9. We evaluate the proposed model by
using the weighted directed network model as Fig. 9.

Next, we set the linkweight as the number of the shortest
paths passing through the link for the network model (Fig. 9)
and evaluate the oscillation energy for each node. Figure 11
shows the evaluation result of the betweenness centrality Cbt
and the energy Ei − (n − 1) in case that |aµ (t) | =

√
2 for all

oscillation modes µ and the damping coefficient γ = 0. We
can see from this figure that the energy Ei − (n − 1) is equal
to the betweenness centrality Cbt for each nodes as shown in
(32).

Consequently, the proposed index by the oscillation en-
ergy can describe several conventional node centralities by
properly assigning each link weight, even if the topologi-
cal structure of the network is asymmetric as the weighted
directed network (Fig. 9).

6. Extended Node Centrality for Describing Propaga-
tion of Node Activity

6.1 Oscillation Energy for aCertain SourceNode andNode
Centrality

The conventional node centralities do not consider the dis-
tribution of source nodes, while they depend on the topo-
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Fig. 12 Oscillation energy for each node in weighted directed graph
(source node is node 1 and 12, γ = 0).

Fig. 13 Oscillation energy for each node inweighted directed graph. This
shows the oscillation energy superposed for all source nodes.

logical structure of network. Generally, the real importance
of nodes in a network should not be defined only by the
topology, because the frequency and the amount of informa-
tion distribution are different among source nodes. In this
subsection, we confirm the oscillation energy for each node
when a certain node is a source node of activity. We use
the weighted directed network model as Fig. 9 and γ = 0.
Figure 12 shows the evaluations of the oscillation energy
for each node with respect to the different source node of
activity. As the initial condition, a displacement of node
1 (Fig. 12(a)) or 12 (Fig. 12(b)) is set to 1 and that of the
other nodes is set to 0. The results show that the oscillation
energy strongly depends on a position of the source node of
activity. While the number of out-going links of node 12
is larger than that of node 1, the oscillation energy in (a) is
relatively larger than that in (b) because the sum of out-going
link weight of node 1 (sum = 2.0) is larger than that of node
12 (sum = 1.65). Note that by superposing oscillation en-
ergy for all source nodes, we have the degree centrality of
Fig. 13. Therefore, the proposed oscillation energy can be
regarded as an extended index of well-known degree central-
ity. Consequently, the oscillation energy of each node gives
extensions of the degree centrality that can reflect link asym-
metry and distribution of source nodes, and corresponds to
the original degree centrality in the simplest case.

6.2 Kinetic Energy and Time-Dependent Node Centrality

In the non-damped oscillation, the kinetic energy and po-
tential energy is alternating each other with time, but the
oscillation energy, which is given by the sum of the kinetic
energy and potential energy, is not changed with time. So,
the oscillation energy (26) does not depend on time.

However, it is necessary to consider the energy-

concerning index that depends on time for the following
two reasons:

• The first reason is to represent the propagation of the
wave in the network. We consider the initial state where
the particular node is selected as the source node. The
oscillation energy of a distant node from the source node
is also positive constant and does not change, even if it
is before/after the arrival time of the wave. Therefore,
wave propagation can not be described by using the
oscillation energy.

• The second reason is the oscillating phenomenon on
the network is damped with time in general. We want
to describe temporal evolution of the strength of node
activity.

We consider the kinetic energy of the node as a time-
dependent energy-concerning index. The kinetic energy is
given by 1

2 m (dx(t)/dt)2 for the node position x(t) and the
mass m. If x(t) is a complex valued function, there are two
ways for calculation of the kinetic energy:

(i). calculation of the kinetic energy from the only real part
of dx(t)/dt, that is 1

2 m (Re[dx(t)/dt])2, or

(ii). calculation of the kinetic energy from a complex value
dx(t)/dt, that is 1

2 m |dx(t)/dt |2.

In the former case (i), the kinetic energy is 0 if the node
stops. For the initial condition, we set that the source node
stops and displacement of it is not 0 at t = 0. Since we want
to recognize that the wave arrived at the source node at the
initial time, it is necessary that the initial kinetic energy to be
a positive value at the source node, even if the source node
stops. In case (ii), the initial kinetic energy of the source
node is positive and that is due to the contribution of the
imaginary part.

From the above discussion, we propose the kinetic en-
ergy EK

i (t) for node i at time t defined as

EK
i (t) :=

1
2

mi

�����
dxi (t)

dt

�����

2
=

1
2

�����
dyi (t)

dt

�����

2
,

as the time-dependent and energy-concerning index. Here,
arbitrary constants are set by the initial conditions as fol-
lows: In the case of the damped oscillation, because all
nodes stops at the time t = 0 and the time differential of
the oscillation part of (23) is 0, aµ (0) is a real number.
Therefore, daµ (t)/dt |t=0 = 0 for critical damping (24) and
overdamping (25) brings

cµ =
γ

2
aµ (0), c+µ =

−α−
α+ − α−

aµ (0), c−µ =
α+

α+ − α−
aµ (0).

Next, we evaluate the kinetic energy EK
i (t) for each

node as an extension of the degree centrality and betweenness
centrality. Network model for evaluations uses the weighted
directed graph shown in Fig. 9. First, we set the link weight
for each link as the same value 1. Figure 14 shows the
temporal evolution (t = 1, 3, 5) of the kinetic energy EK

i (t)
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Fig. 14 Temporal evolution of the kinetic energy for theweighted directed
graph (source node 3 or 12, γ = 0).

Fig. 15 〈EK
i 〉 superposed for all the 23 source nodes in the weighted

directed graph (γ = 0).

when the displacement of the source node 3 or 12 is 1, the
displacement of the other nodes is 0 for the initial condition,
and the damping coefficient γ = 0. We can see from this
figure that the kinetic energy EK

i (t) expresses the behavior
of wave propagation from the source node.

Next, we evaluate the average of the kinetic energy

〈EK
i 〉 :=

1
T

∫ T

0
EK
i (t) dt

for an interval T . If we set the interval T = 1000 and
superpose the 〈EK

i 〉 for all the 23 source nodes, the result is
proportional to the degree centrality shown in Fig. 15. The
value of 〈EK

i 〉 in this figure ismultiplied by a constant number
(2.0) to make it easy to compare the energy 〈EK

i 〉 with the
degree centrality for each node. Let us discuss this result:
In case of the non-damped oscillation model, the oscillation
energy is conserved and static. As shown in Sect. 5.1, the
oscillation energy Ei gives the degree centrality of node i.
In addition, the oscillation energy is equal to the sum of
the kinetic energy and the potential energy, and the amount
of the kinetic energy is equivalent to that of the potential
energy. Therefore, the degree centrality is twice as large as
the kinetic energy in this case. We can see from Figs. 14
and 15 that the kinetic energy of node is an extension of
the degree centrality that can describe temporal evolution of
degree centrality.

Next, we set the linkweight as the number of the shortest
paths passing through the link for the network model (Fig. 9)
and evaluate the characteristics of kinetic energy.

Figure 16 shows the temporal evolution (t = 1, 3, 5)
of the kinetic energy EK

i (t) for the source node 3 or 12

Fig. 16 Temporal evolution of the kinetic energy for theweighted directed
graph (the weight for each link is the number of the shortest paths passing
through the link, γ = 0).

Fig. 17 〈EK
i 〉 superposed for all the 23 source nodes in the weighted

directed graph (the weight for each link is the number of the shortest paths
passing through the link, γ = 0).

for the initial condition, and Fig. 17 is the evaluation result
comparing the betweenness centrality Cbt with the energy
〈EK

i 〉 × 2 − (n − 1) for all the 23 source nodes. In (32),
the oscillation energy Ei is equal to Cbt(i) + (n − 1). The
energy 〈EK

i 〉×2− (n−1) means the oscillation energy which
is double the kinetic energy minus Emin. We can see from
these figures that the energy 〈EK

i 〉×2− (n−1) is equal to the
betweenness centrality Cbt for each nodes and our proposed
index can express the temporal evolution of Cbt by using the
kinetic energy 〈EK

i 〉.

6.3 Node Centrality for Different Damping Factors

Regarding the non-damped oscillation mode (the damping
coefficient γ = 0), we have evaluated proposed new indices
(the oscillation energy and the kinetic energy) in previous
sections. In this subsection, we focus on the damped os-
cillation model. As shown in Sect. 4.3, the magnitude rela-
tion between the damping coefficient γ and the oscillation
frequency ωµ for each oscillation mode µ influences the so-
lution aµ of the equation of motion: that is, for each µ,
aµ describes (1) the damped oscillation (γ/2)2 < ω2

µ), (2)
the critical damping ((γ/2)2 = ω2

µ), or (3) the overdamp-
ing ((γ/2)2 > ω2

µ). Here, for the weighted directed graph
(Fig. 9), the distribution of the oscillation frequency ωµ for
each oscillation mode µ is shown in Fig. 18.

We investigate the characteristics of the oscillation en-
ergy in the damped oscillation model where has the damping
coefficient γ = 0.2, 0.4, 0.8. Note that the oscillation energy
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Fig. 18 Oscillation frequency ωµ for each oscillation mode µ for the
weighted directed graph.

Fig. 19 Temporal evolution of oscillation energy for each node inγ = 0.2.

Fig. 20 Oscillation energy (multiplied by a constant number) and the
degree centrality for each node for γ = 0.2, time = 50.

in previous evaluations does not change over time because
the value of the damping coefficient γ is 0.

If the damping coefficient γ = 0.2, the relation (γ/2)2 <
ω2
µ (µ = 0, 1, 2, · · · , 22) holds for almost all the oscillation

mode µ (except for the minimum value 0 of ω22), that is, the
solution aµ (µ = 0, 1, 2, · · · , 21) describes damped oscilla-
tions and the solution a22 expresses overdamping. Figure 19
shows the temporal evolution (t = 5, 10 and 50) of the os-
cillation energy superposed for all source nodes, where the
damping coefficient γ = 0.2 and the network model is Fig. 9.
This figure shows that the behavior of the oscillation energy
does not change through passage of time if the damping co-
efficient is small as γ = 0.2, while the value of oscillation
energy for each node diminishes gradually. That is that the
oscillation energy at some time is equal to the result at the
other time multiplied by a constant number. If the oscilla-
tion energy is multiplied by a constant number for the result
at time 50, we obtain the result that the oscillation energy
corresponds to the degree centrality as shown in Fig. 20.

Next, in case of γ = 0.4 (γ/2 = 0.2), the solution
aµ (µ = 0, 1, 2, · · · , 20) describes damped oscillations and
a21 and a22 express overdamping. Figures 21 shows the
temporal evolution of oscillation energy in γ = 0.4. Since
the damping coefficient γ is larger and oscillation modes of

Fig. 21 Temporal evolution of oscillation energy for each node inγ = 0.4.

Fig. 22 Oscillation energy (multiplied by a constant number) and the
degree centrality for each node for γ = 0.4, t = 20.

Fig. 23 Temporal evolution of oscillation energy for each node inγ = 0.8.

Fig. 24 Oscillation energy (multiplied by a constant number) and the
degree centrality for each node for γ = 0.8, t = 20.

overdamping increases, the values of the oscillation energy
declines more drastically than that in Fig. 19. Moreover,
the relative relation of the oscillation energy for each node
changes over time: the oscillation energy at some time is
“not” equal to the result at the other time multiplied by a
constant number. Figure 22 shows the comparison result
with the degree centrality at time t = 20. We can see from
this figure that the oscillation energy does not coincide with
the degree centrality in γ = 0.4.

In addition, in case of γ = 0.8, the solution aµ (µ =
0, 1, 2, · · · , 19) describes damped oscillations and the other
a20, a21 and a22 are overdamping. Figures 23 and 24 show
results in γ = 0.8 and the oscillation energy completely
differs from the degree centrality. From the above, we can
see that the conformity between the degree centrality and
the oscillation energy depends on the value of γ. Note
that we obtain the same results for comparison between the
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oscillation energy and the betweenness centrality, and so we
omit the explanation.

7. Conclusion

This paper discusses generally extension of node centralities
based on the oscillation model. For the oscillation model to
describe the network dynamics, we proposed the oscillation
energy and the kinetic energy of each node as new indices of
node centrality. Our proposed indices by the oscillation en-
ergy and the kinetic energy can correspond to various node
centralities by properly assigning the weight of each link. In
addition, while the conventional node centralities (e.g. de-
gree and betweenness) depend on the topological structure
of network and the value of node centrality does not change
unless the topology changes, our proposed extended indices
can describe various network situations including topologi-
cal structure of network, asymmetry of links, the distribution
of source node of activity, and temporal evolution of activity
propagation. Moreover, we can see from evaluation by the
simulation that the conformity between the node centrality
and the oscillation energy depends on the value of γ. Finally,
in this research, we succeeded in understanding the different
centralities (degree centrality and betweenness centrality) in
the same framework. This contributes to the basic research
field of the social network by understanding the concept of
node centrality at a more fundamental level.
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