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Technology to Counter Online Flaming Based on the
Frequency-Dependent Damping Coefficient in the Oscillation Model
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SUMMARY Online social networks, which are remarkably active, of-
ten experience explosive user dynamics such as online flaming, which can
significantly impact the real world. However, countermeasures based on so-
cial analyses of the individuals causing flaming are too slow to be effective
because of the rapidity with which the influence of online user dynam-
ics propagates. A countermeasure technology for the flaming phenomena
based on the oscillation model, which describes online user dynamics, has
been proposed; it is an immediate solution as it does not depend on social
analyses of individuals. Conventional countermeasures based on the oscil-
lation model assume that the damping coefficient is a constant regardless
of the eigenfrequency. This assumption is, however, problematic as the
damping coefficients are, in general, inherently frequency-dependent; the
theory underlying the dependence is being elucidated. This paper discusses
a design method that uses the damping coefficient to prevent flaming under
general conditions considering the frequency-dependence of the damping
coefficient and proposes a countermeasure technology for the flaming phe-
nomena.
key words: online flaming, user dynamics, oscillation model, damping
coefficient

1. Introduction

In recent years, with the spread of social networking sites
such as Twitter and Facebook, users’ activities in online so-
cial networks have come to be closely connected to social
activities in the real world, not only in online communities.
As a result, the effects of explosive online user dynamics, in-
cluding the flaming phenomena, are becoming more serious,
and countermeasures are needed [1], [2].

Although it is desirable to respond immediately with
direct countermeasures to eliminate the factors that cause
the flaming phenomena, analyzing each event in detail, one
by one, will be too slow to prevent the damage from spread-
ing [3], [4]. Thus we need an engineering framework for
flaming countermeasures that does not depend on the de-
tails of each individual event. One such framework has
been proposed [5]. This is based on the oscillation model
on networks [6], [7] which is used to describe online user
dynamics.

Conventional countermeasures for the flaming phenom-
ena have been discussed under the assumption that the damp-
ing coefficient [5] is a constant, and independent of the eigen-
frequency. However, it is known that regardless of the phe-
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nomenon, the damping coefficient generally depends on the
eigenfrequency. In fact, the theoretical characteristics of the
frequency dependence of the damping coefficient have re-
cently been clarified [8]. Based on these insights, we can
consider countermeasures for the flaming phenomena based
on the oscillation model, even in general cases where the
damping coefficient does depend on the eigenfrequency.

In this paper, we introduce a design methodology that
allows the damping coefficient to be used to counter the flam-
ing phenomena even when the damping coefficient depends
on the eigenfrequency; we use it to propose a countermeasure
technology for the flaming phenomena.

2. Oscillation Model for Describing Online User Dy-
namics

Let the Laplacian matrix of the online social network (OSN)
with 𝑛 nodes be L, which is an 𝑛 × 𝑛 square matrix, and the
weight of the link from node 𝑖 to node 𝑗 (𝑖 → 𝑗) be 𝑤𝑖 𝑗 . In
addition, let the eigenvalues ofL be𝜆𝜇 (𝜇 = 0, 1, . . . , 𝑛−1)
and the eigenvectors associated with 𝜆𝜇 be 𝒗𝜇. We assume
the eigenvalues are not duplicated.

The eigenvalues of L are generally complex numbers,
whose range of existence is given by the largest Gershgorin
disk[9] of L as

𝐷max
𝐺 (L) = {𝑧 ∈ C : |𝑧 − 𝑑max | ≤ 𝑑max} , (1)

where 𝑑max is the maximum weighted out-degree of the net-
work. It is known that all the eigenvalues of L lie within its
largest Gershgorin disk [5].

The oscillation model [5], [6] is a minimal model for
describing user dynamics in OSNs. Let 𝑥𝑖 (𝑡) be the state
of node (user) 𝑖 at time 𝑡. Since the influence of inter-
action between users must propagate through any OSN at
a finite speed, its description by the wave equation should
be possible, which is the equation for describing the prop-
agation of something at finite speed. For the state vector
𝒙(𝑡) := 𝑡(𝑥1 (𝑡), . . . , 𝑥𝑛 (𝑡)), the wave equation in the OSN
is written as

d2

d𝑡2
𝒙(𝑡) + 𝚪

d
d𝑡
𝒙(𝑡) = −L 𝒙(𝑡), (2)

where 𝚪 is the matrix expressing the strength of the damping.
Substituting the expansion of 𝒙(𝑡) by 𝒗𝜇 as

𝒙(𝑡) =
𝑛−1∑
𝜇=0

𝑎𝜇 (𝑡) 𝒗𝜇, (3)
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into the wave equation (4), yields the equation of motion for
each oscillation mode 𝑎𝜇 (𝑡) (𝜇 = 0, 1, . . . , 𝑛 − 1) as

d2

d𝑡2
𝑎𝜇 (𝑡) + 𝛾(𝜔𝜇)

d
d𝑡
𝑎𝜇 (𝑡) = −𝜆𝜇 𝑎𝜇 (𝑡), (4)

where 𝛾(𝜔𝜇) is the damping coefficient; it depends on 𝜔𝜇 =√
𝜆𝜇 and is expressed as

𝛾(𝜔𝜇) := 𝛾0 + 𝛾1 𝜆𝜇

with the constant 𝛾0 and 𝛾1 [8]. Note that Re[𝛾(𝜔𝜇)] =
𝛾0 + 𝛾1 Re[𝜆𝜇] ≥ 0.

The solution of (4) is written as

𝑎𝜇 (𝑡) = 𝑐+𝜇 exp
[
−
𝛾(𝜔𝜇)

2
𝑡 + i√𝑟𝜇 exp

(
i
𝜃𝜇

2

)
𝑡

]
+ 𝑐−𝜇 exp

[
−
𝛾(𝜔𝜇)

2
𝑡 − i√𝑟𝜇 exp

(
i
𝜃𝜇

2

)
𝑡

]
, (5)

where 𝑐+𝜇 and 𝑐−𝜇 are constants that depend on 𝜇, and 𝑟𝜇 and
𝜃𝜇 (−𝜋 < 𝜃𝜇 ≤ 𝜋) are, respectively, the absolute value and
the argument of the following complex number:

𝑟𝜇 exp(i 𝜃𝜇) := 𝜆𝜇 −
(
𝛾(𝜔𝜇)

2

)2
= −

(
𝛼 +

𝛾(𝜔𝜇)
2

)2
.

(6)

In the oscillation model, the oscillation energy can be
considered as the strength of the activity of user dynamics
[10], [11]. Also, the situation in which oscillation energy
diverges over time is considered to describe explosive user
dynamics, which include the flaming phenomena. Therefore,
in order to prevent explosive user dynamics, it is necessary
to consider the conditions under which the oscillation energy
does not diverge. By deriving the strength of the damping
that satisfies this condition, we can obtain a framework in
which the strength of damping can be adjusted to prevents
the flaming phenomena.

The conventional solutions to the flaming phenomena
assume that the damping coefficient is a constant and inde-
pendent of eigenfrequency. This corresponds to the special
case of 𝛾1 = 0 in (4). Following [5], the condition under
which the oscillation energy does not diverge is given as

∀𝜇,
𝛾0

2√𝑟𝜇
≥
����sin 𝜃𝜇

2

���� , (7)

and the value of the damping coefficient required to satisfy
this condition is given by

𝛾0 ≥
√

2 𝑑max. (8)

In the next section, in order to consider countermeasures
for the flaming phenomena, we discuss the conditions under
which the oscillation energy does not diverge in the case of
𝛾1 ≠ 0.

3. Model of Explosive User Dynamics Considering
Frequency-Dependent Damping Coefficient

Since the oscillation energy is proportional to the square of

the absolute value of 𝑎𝜇 (𝑡), we derive the condition under
which 𝑎𝜇 (𝑡) does not diverge and then the condition under
which flaming does not occur.

By decomposing the damping coefficient 𝛾(𝜔𝜇) into
real and imaginary parts as in

𝛾(𝜔𝜇) =
(
𝛾0 + 𝛾1 Re[𝜆𝜇]

)
+ i 𝛾1 Im[𝜆𝜇] . (9)

𝑎𝜇 (𝑡) is written as

𝑎𝜇 (𝑡) = 𝑐+𝜇 exp
[
−
𝛾0 + 𝛾1Re[𝜆𝜇]

2
𝑡 − √

𝑟𝜇 sin
(
𝜃𝜇

2

)
𝑡

]
× 𝑐+𝜇 exp

[
−i

𝛾1Im[𝜆𝜇]
2

𝑡 + i√𝑟𝜇 cos
(
𝜃𝜇

2

)
𝑡

]
+ 𝑐−𝜇 exp

[
−
𝛾0 + 𝛾1Re[𝜆𝜇]

2
𝑡 + √

𝑟𝜇 sin
(
𝜃𝜇

2

)
𝑡

]
× 𝑐−𝜇 exp

[
−i

𝛾1Im[𝜆𝜇]
2

𝑡 − i√𝑟𝜇 cos
(
𝜃𝜇

2

)
𝑡

]
.

(10)

To determine if 𝑎𝜇 (𝑡) diverges or not, we need to check
whether the real components of the exponent of the expo-
nential function in (10) are positive or negative, and if 𝑎𝜇 (𝑡)
diverges, the following condition is satisfied:(Re[𝛾(𝜔𝜇)]

2√𝑟𝜇
+ sin

(
𝜃𝜇

2

)) (Re[𝛾(𝜔𝜇)]
2√𝑟𝜇

− sin
(
𝜃𝜇

2

))
< 0.

This means the one of real components of the exponent is
positive and the other is negative.

Consequently, the condition under which the oscillation
energy diverges is given by

∃𝜇,
𝛾0 + 𝛾1Re[𝜆𝜇]

2√𝑟𝜇
<

����sin 𝜃𝜇

2

���� , (11)

and the condition that the oscillation energy does not diverge
is obtained as

∀𝜇,
𝛾0 + 𝛾1Re[𝜆𝜇]

2√𝑟𝜇
≥
����sin 𝜃𝜇

2

���� . (12)

Since the conventional condition (7) that the oscillation en-
ergy does not diverge corresponds to the case of 𝛾1 = 0
as per condition (12), the condition (12) for the frequency-
dependent damping coefficient is a generalization of the con-
ventional result.

4. Countermeasure for Flaming Phenomena Given the
Frequency-Dependent Damping Coefficient

Based on condition (12), i.e., the oscillation energy does
not diverge, we consider a design method for the damping
coefficient to satisfy (12), and consider a countermeasure
technology for the flaming phenomena by adjusting the value
of the damping coefficient.

4.1 Adjusting the Damping Coefficient

Among parameters 𝛾0 and 𝛾1, which determine the strength
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of damping, 𝛾1 is the eigenfrequency dependent term. This
means that the value of 𝛾1 is a parameter predetermined by
the structure of the network. Therefore, 𝛾0 is the only param-
eter that can be manipulated independently of the network
structure. In this framework, even if various values are given
as 𝛾1, we can counter the flaming phenomena by adjusting
the value of 𝛾0 . Here, the actual action to adjust the value of
𝛾0 includes disseminating other information to attract users’
attention. In the following, we consider the value of 𝛾0 nec-
essary to prevent the triggering of explosive user dynamics,
and we use its value in a flaming countermeasure.

The range of eigenvalues of L is the interior of the
largest Gershgorin disk (including its boundaries) of radius
𝑑max with center (𝑑max, 0). From condition (12), the oscil-
lation energy does not diverge, we can consider the range
satisfying condition (12) on the complex plane. Then, if the
largest Gershgorin disk ofL lies completely within the range
on the complex plane, the oscillation energy never diverges
regardless of the network structure.

In order to clarify the region on the complex plane in
which condition (12) ensures that the oscillation energy does
not diverge, the inequality of condition (12) is transformed
as follows:

Im[𝜆𝜇]2 ≤ 𝑍

4 − 4𝛾0 𝛾1 − 4 𝛾2
1 Re[𝜆𝜇]

, (13)

where

𝑍 = 𝛾4
0 + 4𝛾3

0 𝛾1 Re[𝜆𝜇] + 6 𝛾2
0 𝛾

2
1 Re[𝜆𝜇]2

+ 4 𝛾2
0 𝑋 + 4 𝛾0 𝛾

3
1 Re[𝜆𝜇]3 + 8 𝛾0 𝛾1 Re[𝜆𝜇]𝑋

+ 𝛾4
1 Re[𝜆𝜇]4 + 4 𝛾2

1 Re[𝜆𝜇]2 𝑋,

and 𝑋 is the real part of (6).
The range of eigenvalues of L, determined by the Ger-

shgorin theorem, are written as

Im[𝜆𝜇]2 ≤ 𝑑2
max − (Re[𝜆𝜇] − 𝑑max)2. (14)

We compare (14) and the condition (13) that the oscillation
energy does not diverge. Because both of them are axially
symmetric on by the real axis, we consider the upper-half
plane. The condition that the largest Gershgorin disk is
completely included the range of (13) is expressed as

𝑑2
max − (Re[𝜆𝜇] − 𝑑max)2 ≤ 𝑍

4 (1 − 𝛾0 𝛾1 − 𝛾2
1 Re[𝜆𝜇])

,

which can be transformed to(
𝛾0 𝛾1 + 1 + 2 𝛾2

1 𝑑max

)
Re[𝜆𝜇]

≥ −(𝛾2
0 + 2 𝛾0 𝛾1 𝑑max − 2 𝑑max), (15)

by considering Re[𝜆𝜇] ≥ 0.
We consider the conditions for satisfying inequality (15)

in the following three cases.

• if 𝛾0𝛾1 + 1 + 2𝛾2
1 𝑑max = 0,

𝛾2
0 + 2 𝛾0 𝛾1 𝑑max − 2 𝑑max ≥ 0. (16)

The range of 𝛾0 that satisfies the above is as follows
from 𝛾0 ≥ 0

𝛾0 ≥
√
𝛾2

1 𝑑
2
max + 2 𝑑max − 𝛾1 𝑑max. (17)

• if 𝛾0𝛾1 + 1 + 2𝛾2
1 𝑑max > 0,

𝛾2
0 + 2 𝛾0 𝛾1 𝑑max − 2 𝑑max

𝛾0 𝛾1 + 1 + 2 𝛾2
1 𝑑max

≥ −Re[𝜆𝜇] . (18)

In order for this inequality to hold, the numerator needs
to be non-negative, so we obtain

𝛾2
0 + 2 𝛾0 𝛾1 𝑑max − 2 𝑑max ≥ 0. (19)

Considering 𝛾0 ≥ 0, the condition of 𝛾0 to ensure the
non-divergence of oscillation energy for all eigenvalues
is written as

𝛾0 ≥
√
𝛾2

1 𝑑
2
max + 2 𝑑max − 𝛾1 𝑑max. (20)

• if 𝛾0 𝛾1 + 1 + 2 𝛾2
1 𝑑max < 0,

𝛾2
0 + 2 𝛾0 𝛾1 𝑑max − 2 𝑑max

𝛾0 𝛾1 + 1 + 2 𝛾2
1 𝑑max

≤ −Re[𝜆𝜇] . (21)

Inequality (21) is transformed to

(𝛾0 + 2 𝛾1 𝑑max)2 ≥ 0 (22)

Therefore, inequality (21) always holds in this case.

To summarize the above results, the 𝛾0 condition that
ensures the oscillation energy does not diverge for all eigen-
values is obtained as

𝛾0 ≥
√
𝛾2

1 𝑑
2
max + 2 𝑑max − 𝛾1 𝑑max. (23)

Therefore, given the maximum weighted out-degree of
the network, 𝑑max, and parameter 𝛾1 of the damping coeffi-
cient, adjusting the value of 𝛾0 to satisfy (23) will counter
the flaming phenomena.

4.2 Case Studies

Using an example network with 𝑑max = 100, this section
considers three cases of different values of 𝛾1, the frequency
dependence of the damping coefficient: 𝛾1 = 0, 𝛾1 > 0
or 𝛾1 < 0. In all cases, we confirm that the region of
the condition that the oscillation energy does not diverge
includes the largest Gershgorin disk of L by satisfying the
condition (23) of 𝛾0.

First, we confirm the case of complete flaming preven-
tion with 𝛾0 =

√
𝛾2

1 𝑑
2
max + 2 𝑑max − 𝛾1 𝑑max, where 𝛾0 is the

minimum value that satisfies condition (23). Figure 1 shows
the regions in which the oscillation energy does not diverge
as given by condition (12), for the cases of 𝛾1 = 0.1, 𝛾1 = 0
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Fig. 1 Examples of complete flaming prevention

Fig. 2 Examples of incomplete flaming prevention

and 𝛾1 = −0.1. These regions are depicted in blue. In addi-
tion, the largest Gershgorin disk of L is depicted in red. In
all figures, it can be seen that the regions wherein the oscil-
lation energy does not diverge completely include the largest
Gershgorin disk, so that no divergence of oscillation energy
occurs regardless of the details of the network structure.

Next, we show the case of incomplete flaming preven-
tion by using 𝛾0 =

√
𝛾2

1 𝑑
2
max + 2 𝑑max−𝛾1 𝑑max−5, in which

𝛾0 is less than the minimum value that satisfies condition
(23). Figure 2 shows the regions wherein the oscillation en-
ergy does not diverge as indicated by condition (12), for the
cases of 𝛾1 = 0.1, 𝛾1 = 0, and 𝛾1 = −0.1. In these cases,
the regions cannot completely enclose the Gershgorin disk.
If even just one eigenvalue appears outside of the region, the
oscillation energy diverges and the flaming phenomenon oc-
curs. Therefore, depending on the position of the eigenvalues
of L, flaming prevention is not assured.

5. Conclusion

In this paper, we proposed a countermeasure technology for
the flaming phenomena based on the oscillation model with
the frequency-dependent damping coefficient. The design
method that yields the damping coefficients using condition
(23) is a generalized version of the conventional counter-
measure technology for the flaming phenomena. Regardless
of the value of parameter 𝛾1, which is the strength of the
frequency dependence of damping coefficient, we can pre-
vent explosive user dynamics by setting parameter 𝛾0 to be
an appropriate value.

Furthermore, the required value of 𝛾0 can be determined
from just 𝑑max, which is the maximum weighted out-degree
of the network, and 𝛾1, which is the strength of the frequency-
dependence of the damping coefficient. One of the methods
for increasing the value of 𝛾0 in the actual OSNs is that to
disseminate other information to attract users’ attention is

mentioned.
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