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Independence of the Fundamental Equation of the Oscillation
Model on Algebraic Representations: Social Media Echo Chamber
Effect

Kakeru OHKI†a), Ayako HASHIZUME††b), Nonmembers, and Masaki AIDA†c), Fellow

SUMMARY In the oscillation model that describes the user dynamics
of online social networks, it is known that the fundamental equation can
explicitly describe the causal relationship between the network structure and
user dynamics. The fundamental equation uses algebra that satisfies the anti-
commutation relation, and its matrix representation is not unique. However,
even if the matrix representations are different, the same results should be
derived from different representations of the fundamental equation if they
are describing the same phenomenon. In this paper, we confirm, using
the echo-chamber effect as an example, that the fundamental equations of
different matrix representations lead to the same result.
key words: oscillation model, social media echo chamber, anti-
commutation relation, fundamental equation

1. Introduction

With the rapid development of information networks in
recent years, social networking services (SNSs) have be-
come widespread, and user interest in online social networks
(OSNs) has become active. While such user dynamics in
OSN support human activities in the real world by promot-
ing information exchange and mutual understanding, they
also cause social problems such as the online flaming phe-
nomenon and echo-chamber effect. Therefore, understand-
ing user dynamics in OSN is a crucial issue.

The oscillation model is known to be able to describe
user dynamics on OSNs [1], [2]. This is a minimal model that
applies the wave equation on networks. The wave equation
is an equation that expresses the phenomenon that an object
propagates through a medium at finite speed. In the concept
of the oscillation model, the strength of the users’ activity
should have some influence on each other through the OSN,
so the wave equation models the propagation of the influence
through the OSN at finite speed.

The concept of node centrality represents the strength
and/or importance of the activity of nodes in the network
[3]–[5]. The characteristic of the oscillation model is that
the oscillation energy gives a generalized concept of node
centrality and so can express the strength of network activity
[6], [7]. Conventionally, typical node centralities used in net-
work analysis are the degree centrality and the betweenness
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centrality; fortunately, the oscillation model can provide a
unified framework for both of them. That is, under the con-
dition that there is no bias in network usage, all link weights
are assumed to be 1, the oscillation energy of each node
yields degree centrality. On the other hand, taking the link
weight to be the number of shortest paths that pass through
that link (e.g., the volume of traffic), the oscillation energy
of each node leads to the betweenness centrality. Further-
more, the oscillation model can be applied even when the
network usage is biased, and provides a generalization of
node centrality.

The oscillation model makes it possible to derive a
fundamental equation that can explicitly describe the causal
relationship between the structure of the network and the
user dynamics generated from the structure. However, since
the method of representing the fundamental equations using
a matrix is not unique, it is necessary to confirm whether the
fundamental equations in different matrix representations
describing the same phenomenon yield the same results. If
we get the same result, the fundamental equation can be
considered to be well-defined. This paper takes the echo-
chamber effect as an example and shows that the same user
dynamics can be derived from the fundamental equations in
different matrix representations.

The rest of this paper is organized as follows. Sec. 2
gives an overview of the oscillation model and explains the
fundamental equation. In Sec. 3, we show the characteristics
of user dynamics representing the echo-chamber effect that
is derived by using the fundamental equation. In Sec. 4,
another representation of the fundamental equation is in-
troduced, the user dynamics representing the echo-chamber
effect is derived by using the other representation. The re-
sults show that the same user dynamics as described in Sec. 3
are obtained. Finally, Sec. 5 concludes this paper.

2. Oscillation Model for User Dynamics in OSNs

The fundamental equations of user dynamics can be sum-
marized as follows. First, for nodes 𝑖, 𝑗 ∈ 𝑉 of directed
graph 𝐺 (𝑉, 𝐸) that represents the structure of an OSN with
𝑛 users, if the weight of directed link (𝑖 → 𝑗) ∈ 𝐸 is given
as 𝑤𝑖 𝑗 , the adjacent matrix A = [A𝑖 𝑗 ]1≤𝑖, 𝑗≤𝑛 is defined as

A𝑖 𝑗 :=
{
𝑤𝑖 𝑗 , (𝑖 → 𝑗) ∈ 𝐸,
0, (𝑖 → 𝑗) ∉ 𝐸.

(1)
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Also, given nodal (weighted) out-degree 𝑑𝑖 :=
∑

𝑗∈𝜕𝑖 𝑤𝑖 𝑗 ,
the degree matrix is defined as

D := diag(𝑑1, . . . 𝑑𝑛). (2)

Here, 𝜕𝑖 denotes the set of adjacent nodes of out-links from
node 𝑖. Next, the Laplacian matrix of the directed graph
representing the structure of the OSN is defined by

L := D −A. (3)

Let the state vector of users at time 𝑡 be

𝒙(𝑡) := 𝑡(𝑥1 (𝑡), . . . , 𝑥𝑛 (𝑡)),

where 𝑥𝑖 (𝑡) (𝑖 = 1, . . . , 𝑛) denotes the user state of node 𝑖
at time 𝑡. Then, the wave equation for the OSN is written as

d2

d𝑡2
𝒙(𝑡) = −L 𝒙(𝑡). (4)

Here, in addition to simply finding the solution 𝒙(𝑡) of the
wave equation (4), it is desirable to be able to describe what
kind of OSN structure impacts user dynamics. In other
words, we want to describe the causal relationship between
OSN structure and user dynamics. To achieve this, we need
to develop a first-order differential equation with respect
to time (hereinafter referred to as the fundamental equa-
tion) [8], [9].

Let us introduce a new matrix, H, as follows.

H :=
√
D−1 L =

√
D −

√
D−1 A, (5)

where
√
D := diag(

√
𝑑1, . . . ,

√
𝑑𝑛). As is well-known, the

normalized Laplacian matrix is defined as

N :=
√
D−1 L

√
D−1 = 𝑰 −

√
D−1 A

√
D−1;

so we call H the semi-normalized Laplacian matrix. Here,
𝑰 is the 𝑛 × 𝑛 unit matrix.

Using the semi-normalized Laplacian matrix H, a new
fundamental equation for user dynamics can be written as
follows.

i
d
d𝑡

𝒙̂(𝑡) =
(
H ⊗ 𝒂̂ +

√
D ⊗ 𝒃̂

)
𝒙̂(𝑡), (6)

where 𝒂̂ and 𝒃̂ are 2 × 2 matrices defined as

𝒂̂ =
1
2

[
+1 +1
−1 −1

]
, 𝒃̂ =

1
2

[
+1 −1
+1 −1

]
,

and 𝒙̂(𝑡) is the 2𝑛-dimensional state vector. The solution
𝒙(𝑡) of the original wave equation (4) can be obtained from
the solution 𝒙̂(𝑡) by

𝒙(𝑡) = (𝑰 ⊗ (1, 1)) 𝒙̂(𝒕). (7)

⊗ denotes the Kronecker product [10].
The fundamental equation is similar to the Dirac equa-

tion of relativistic quantum mechanics, and its feature is that
𝒂̂ and 𝒃̂ satisfy the anti-commutation relation:

{ 𝒂̂, 𝒃̂} := 𝒂̂ 𝒃̂ + 𝒃̂ 𝒂̂ = 𝒆, 𝒂̂2 = 𝒃̂2 = ô, (8)

where 𝒆 denotes the 2 × 2 unit matrix and ô denotes the null
matrix.

3. Echo-Chamber Effect

The echo-chamber effect is a phenomenon in which beliefs
that are far from common sense are strengthened within
a relatively small community existing in an online social
network. One model proposed to explain the occurrence of
the echo-chamber effect posits that a relatively small partial
network corresponding to a closed community detaches itself
from the online social network, and the separated subnetwork
becomes a complete graph [12], [13].

Here, based on the fundamental equation (6), let us
consider the situation in which the weights of all the links
in the separated subnetwork have the same value of 𝑤 [14].
This is a situation in which the weight of the link, which
indicates the strength of the relationship between users, has
increased to the limit and is saturated because the discussion
is activated in the divided community. At this time, if the
number of users in the community is 𝑛, the nodal degree
is the same for all nodes, and 𝑑 = (𝑛 − 1) 𝑤. Also, in
the corresponding Laplacian matrix, all eigenvalues other
than 0 are duplicated, and the eigenvalues are denoted as
𝜆 = 𝜔2 = 𝑛 𝑤.

In this situation, since the degree matrix is D = 𝑑 𝑰,
which is proportional to the identity matrix 𝑰, the matrices
H and

√
D appearing in the fundamental equation (6) can

exhibit simultaneous diagonalization. Therefore, if the fun-
damental equation (6) is transformed so that the matrices H
and

√
D are diagonalized simultaneously and expressed in

the block diagonalized form of 2×2, the equations for all the
eigenvalues, other than the eigenvalue of 0 of the Laplacian
matrix, are the same and can be written as follows:

i
d
d𝑡
𝝍(𝑡) =

(
𝜔2

2
√
𝑑

[
+1 +1
−1 −1

]
+
√
𝑑

2

[
+1 −1
+1 −1

])
𝝍(𝑡)

=

[
+ 𝜔2+𝑑

2
√
𝑑

+ 𝜔2−𝑑
2
√
𝑑

− 𝜔2−𝑑
2
√
𝑑

− 𝜔2+𝑑
2
√
𝑑

]
𝝍(𝑡). (9)

Here, if the two-dimensional vector of the solution of (9) is
denoted as

𝝍(𝑡) =
(
𝜓+ (𝑡)
𝜓− (𝑡)

)
, (10)

and set the Ansatz of (9) as

𝜓± (𝑡) := exp
(
∓i𝜃± (𝑡)

)
, (11)

in double sign correspondence; this yields

d
d𝑡
𝜃± (𝑡) = 𝜔2 + 𝑑

2
√
𝑑

+ 𝜔2 − 𝑑

2
√
𝑑

exp
(
±i

(
𝜃+ (𝑡) + 𝜃− (𝑡)

) )
.

(12)
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Since 𝜃± (𝑡) is a complex number in general, by substituting

𝜃± (𝑡) = Re[𝜃± (𝑡)] + i Im[𝜃± (𝑡)]

into (12), we obtain the temporal evolutions of the real and
the imaginary parts of 𝜃± (𝑡) as

d
d𝑡

Re[𝜃± (𝑡)]

=
𝜔2 + 𝑑

2
√
𝑑

+ 𝐶± (𝑡) cos
(
Re[𝜃+ (𝑡)] + Re[𝜃− (𝑡)]

)
=
𝜔2 + 𝑑

2
√
𝑑

+ 𝐶± (𝑡) sin
(
−

(
Re[𝜃∓ (𝑡)] − 𝜋

2

)
− Re[𝜃± (𝑡)]

)
,

(13)
d
d𝑡

Im[𝜃± (𝑡)] = ±𝐶± (𝑡) sin
(
Re[𝜃+ (𝑡)] + Re[𝜃− (𝑡)]

)
,

(14)

where

𝐶± (𝑡) :=
𝜔2 − 𝑑

2
√
𝑑

exp
(
∓

(
Im[𝜃+ (𝑡)] + Im[𝜃− (𝑡)]

) )
.

(15)

From this result, the following properties of the solution
can be predicted. Note that the temporal evolution (13) of
the real part of 𝜃± (𝑡) has a structure similar to that of the
Kuramoto model, since 𝐶± (𝑡) > 0. The difference from the
Kuramoto model is that 𝐶± (𝑡) is not a constant. Now, if
𝐶± (𝑡) is large enough and phase synchronization occurs as
in a Kuramoto model, the following states are realized:

Re[𝜃+ (𝑡)] + Re[𝜃− (𝑡)] = +𝜋
2
.

Along with this, the temporal change (14) of the imaginary
part of 𝜃± (𝑡) becomes

d
d𝑡

Im[𝜃± (𝑡)] = ±𝐶± (𝑡), (16)

because the sin function part of (14) becomes +1. Therefore,
𝜃+ (𝑡) increases and 𝜃− (𝑡) decreases with time. In both cases,
these changes increase the amplitude of 𝜓± according to the
Ansatz (11). This result means that the activity of the user
in the community is activated, and it is considered that this
describes the occurrence of the echo-chamber effect.

4. Verification of Another Representation of the Fun-
damental Equation

The fundamental equation (6) is one representation of the
fundamental equation; another representation that satisfies
the anti-commutation relation (8) is given by

i
d
d𝑡

𝒙̂(𝑡) =
(
H ⊗ 𝒃̂ +

√
D ⊗ 𝒂̂

)
𝒙̂(𝑡), (17)

in which the 2 × 2 matrices 𝒂̂ and 𝒃̂ are exchanged. The

same as (6), the solution of (17) is also linked to the solution
of the wave equation (4) by (7). Therefore, there should be
no problem in adopting either (6) or (17) as the fundamental
equation.

In this section, we would like to confirm whether the
echo-chamber effect derived from the fundamental equation
(6) in the previous section has the same result as the funda-
mental equation (17) in the other representation.

As in the previous section, we consider the situation that
the degree matrix, D = 𝑑 𝑰, is proportional to the identity
matrix. Therefore, matrices H and

√
D can be simulta-

neously diagonalized. If the fundamental equation (17) is
expressed in the block diagonalized form of 2 × 2, the equa-
tions for all eigenvalues, other than the eigenvalue of 0 of
the Laplacian matrix, are the same, and can be written as
follows:

i
d
d𝑡
𝝍(𝑡) =

(
𝜔2

2
√
𝑑

[
+1 −1
+1 −1

]
+
√
𝑑

2

[
+1 +1
−1 −1

])
𝝍(𝑡)

=

[
+ 𝜔2+𝑑

2
√
𝑑

− 𝜔2−𝑑
2
√
𝑑

+ 𝜔2−𝑑
2
√
𝑑

− 𝜔2+𝑑
2
√
𝑑

]
𝝍(𝑡), (18)

Here, in order to emphasize the difference from the previous
section, the different parts are shown in red. As in the
previous section, the two-dimensional vector of the solution
of (18) is denoted as

𝝍(𝑡) =
(
𝜓+ (𝑡)
𝜓− (𝑡)

)
, (19)

and set the Ansatz of (18) as

𝝍± (𝑡) := exp
(
∓i𝜃± (𝑡)

)
, (20)

in double sign correspondence; this yields

d
d𝑡
𝜃± (𝑡) = 𝜔2 + 𝑑

2
√
𝑑

− 𝜔2 − 𝑑

2
√
𝑑

exp
(
±i

(
𝜃+ (𝑡) + 𝜃− (𝑡)

) )
.

(21)

Since 𝜃± (𝑡) is a complex number in general, by substituting

𝜃± (𝑡) = Re[𝜃± (𝑡)] + i Im[𝜃± (𝑡)]

into (21), we obtain the temporal evolutions of the real and
the imaginary parts of 𝜃± (𝑡) as

d
d𝑡

Re[𝜃± (𝑡)]

=
𝜔2 + 𝑑

2
√
𝑑

−𝐶± (𝑡) cos
(
Re[𝜃+ (𝑡)] + Re[𝜃− (𝑡)]

)
=
𝜔2 + 𝑑

2
√
𝑑

+ 𝐶± (𝑡) sin
(
−

(
Re[𝜃∓ (𝑡)] + 𝜋

2

)
− Re[𝜃± (𝑡)]

)
,

(22)
d
d𝑡

Im[𝜃± (𝑡)] = ∓𝐶± (𝑡) sin
(
Re[𝜃+ (𝑡)] + Re[𝜃− (𝑡)]

)
,

(23)
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where 𝐶± (𝑡) is defined as (15), the same as in the previous
section.

From this result, the following properties of the solution
can be predicted. Note that the temporal evolution (13) of
the real part of 𝜃± (𝑡) also has a structure similar to that of
the Kuramoto model. Now, if phase synchronization occurs
as in a Kuramoto model, the following states are realized:

Re[𝜃+ (𝑡)] + Re[𝜃− (𝑡)] = −𝜋

2

This is different from the previous section. Along with this,
the temporal change (23) of the imaginary part of 𝜃± (𝑡)
becomes

d
d𝑡

Im[𝜃± (𝑡)] = ∓𝐶± (𝑡) sin
(
Re[𝜃+ (𝑡)] + Re[𝜃− (𝑡)]

)
= ∓𝐶± (𝑡) × (−1)
= ±𝐶± (𝑡), (24)

because the sin function part of (23) becomes−1. This result
is the same as (16), and it can be seen that the behavior of
the solution does not depend on the representation of the
fundamental equation.

5. Conclusion

In the oscillation model, the fundamental equation can de-
scribe user dynamics, and at the same time, describe the
causal relationship between the network structure and the
user dynamics. Since the fundamental equation is based on
an algebraic structure that satisfies the anti-commutation re-
lation and its matrix representation is not unique, there are
two different representations in the fundamental equation.
The question is, do the different representations describe the
same user dynamics for the same phenomenon. In other
words, if different results are derived from the fundamental
equations, the properties of the solutions that appear will
differ depending on the representations of the fundamental
equation, which means that the theoretical model will con-
tain contradictions. In this paper, we compared the user
dynamics derived from both fundamental equations for the
echo-chamber effect and confirmed that they yielded the
same user dynamics.
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