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Abstract—Clustering mechanisms are crucial for scalable rout-

ing in mobile ad hoc networks (MANETs). We have previously 

proposed an autonomous decentralized clustering mechanism 

that is based on differential equations. This method adopts both 

the diffusion effect for autonomous decentralized control, and 

the drift effect for balancing with the diffusion effect. In our 

conventional mechanism, we need to set the strength of diffu-

sion effect stronger than the drift effect because fine tuning for 

balancing both effects is difficult. However, it results in a de-

crease of the number of clusters by the diffusion effect, and it is 

a problem on forming sustainable cluster structures. We need 

the solution of this problem for clustering in MANET. In this 

paper, we propose a mechanism autonomously adjusting the 

effects of both diffusion and drift. We show that our proposed 

mechanism can form sustainable cluster structures reflecting the 

characteristic of our conventional mechanism. Finally, we eval-

uate the effectiveness of the proposed mechanism for an envi-

ronment in which the fusion of subnetworks occurs. 
 
Index Terms—self-adjustment, autonomous decentralized 

mechanism, clustering mechanism, structure formation, mobile 

ad hoc network 

I. INTRODUCTION 

The autonomous decentralized mechanism in which 

each node can act autonomously based on local infor-

mation of itself is an effective control framework for the 

environment in which it is difficult for us to know the 

state of a whole system exactly. In particular, mobile ad 

hoc networks (MANETs) are one of the systems in which 

the mechanism is effective. This is because MANETs are 

composed autonomously of only mobile nodes, and the 

topology of MANETs changes frequently with the 

movement of nodes [1], [2]. In MANETs, since routing 

schemes based on a flat structure have scalability prob-

lems, the hierarchical structure is essential to introduce 

dynamic routing [3]–[8]. For example, communication 

overhead of representative proactive protocol as routing 

protocol for a flat structure increases with the square of 

number of nodes [9].  
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From the above background, we have previously pro-

posed autonomous decentralized clustering mechanism to 

introduce hierarchical structures in MANETs [10]. In our 

mechanism, each node has values of a certain distribution 

in advance, and nodes exchange a portion of their value 

with the adjacent nodes by obeying a predefined action 

rule based only on local information. After that, our 

mechanism can form spatial structures in the network, 

then cluster structures are decided based on local maxi-

mum values of the distribution. We also have verified the 

effectiveness of our mechanism by comparing with au-

tonomous decentralized clustering mechanism based on 

bio-inspired approach which is well known autonomous 

decentralized mechanism [11], [12]. In this verification, 

we showed that our mechanism can act about 30 times 

faster than the mechanism based on bio-inspired approach 

[13]. Therefore this suggests the possibility that our 

mechanism has the flexibility for dynamic change of 

network topology with movement of nodes.   

In large scale MANETs, the most drastic changes of 

network topology are fusion and division of networks. 

The fusion of networks means that a node group encoun-

ters the other node groups which are outside of communi-

cation range and that these node groups enter to inside of 

communication range. On the other hand, the division of 

networks means that a node group is divided into some 

node groups with movement of nodes. In these drastic 

changes, cluster structures of different subnetworks need 

common criteria when fusion of subnetworks occurs. 

This is because cluster structures cannot be formed based 

on the common criteria when the fusion of different sub-

networks occurs. Therefore cluster structures need to 

have common criteria even in different subnetworks. 

However, cluster structures formed by our mechanism do 

not have the common criterion. In our mechanism, the 

magnitude of the amplitude of the distribution in different 

subnetworks varies. Here, we define the magnitude of the 

amplitude of the distribution as the difference between 

maximum of the distribution and minimum of the distri-

bution. If subnetworks have different amplitudes, sub-

networks cannot create appropriate clustering based on 

the common criteria because cluster structures having the 

huge amplitude strongly affect clusters formation when 

the fusion of subnetworks occurs (Fig. 1). To avoid this 

problem, different subnetworks should have the common 
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amplitude. The most primitive way to realize the common 

amplitude is to set appropriately the values of parameters 

in the clustering mechanism, in advance. However, [14] 

clarified that setting the value of parameters is difficult. 

Therefore, in this paper, we propose a self-adjustment 

mechanism that can adjust the value of parameters auton-

omously so as to uniform the magnitude of the amplitude.  

 
Fig. 1. Fusion of subnetworks having different amplitude 

  
Fig. 2. Summary of our autonomous decentralized clustering mecha-

nism 

This paper is organized as follows: Section II briefly 

explains our autonomous decentralized clustering mecha-

nism for introducing hierarchical structures for ad hoc 

networks. Section III proposes the self-adjustment mech-

anism that can adjust the magnitude of amplitude. Section 

IV investigates whether the self-adjustment mechanism 

can adjust the parameters so as to uniform the magnitude 

of the amplitude. Section V verify that the self-

adjustment mechanism can maintain cluster structures of 

subnetworks when the fusion of subnetworks occurs. In 

section VI, we conclude this paper.  

II. AUTONOMOUS DECENTRALIZED CLUSTERING 

MECHANISM 

We briefly explain our autonomous decentralized clus-

tering mechanism in continuous 1-dimensional space [10]. 

Let the density distribution of a certain quantity at posi-

tion   at time t in space be  (   ). The value of initial 

distribution  (   ) is determined based on a certain met-

ric, and each position   exchanges a part of the value of 

 (   )  with adjacent positions by obeying predefined 

rule. For example, a certain metric is chosen based on 

battery energy or node degree. By continuing the ex-

change, this mechanism can form spatial structures of 

clusters that is described by  (   ).  

Here, we explain the predefined rule for exchanging 

the value of  (   ). Let  (   ) be 1-dimensional vector 

representing the magnitude of flow exchanging the value 

of  (   ) per unit of time.  (   ) is expressed by the drift 

term    (   ) (   )  and the diffusion term 

      (   )   ⁄  as: 

 (   )     (   ) (   )     
  (   )

  
 (1) 

 
Fig. 3. Decision of potential function  (   ) by using back-diffusion 

where   and   is positive constant, and     needs to sat-

isfy 

    
 

 
 (2) 

The effect of the drift term is to emphasize the peaks of 

distribution, on the other hand, the effect of the diffusion 

term is to smooth the distribution. Our mechanism forms 

the spatial structures by balance between the drift effect 

and the diffusion effect (Fig. 2). The function  (   ) is 

determined by a potential function  (   ) as  

 (   )   
  (   )

  
 (3) 

The drift effect should be opposite effect compared 

with the diffusion effect. Thus, we decide the potential 

function as (4): 

 (      )   ( (   )    
   (   )

   
  )  (4) 

where    is positive constant. Here we use    as update 

interval to update the potential function. 

       (   )    ⁄    in (4) means time reversal of 

diffusion phenomenon. That is,        (   )    ⁄    in 

(4) sharpens the peaks of the distribution. Then, we make 

the distribution upside down (Fig. 3). Hereby, the drift 

effect can be opposite to the diffusion effect. From the 

above discussion, the action rule is determined by only 

local information of adjacent nodes. Since similar 

characteristic of local interaction is also true in  -

dimensional space, this mechanism can work as a 

autonomous decentralized manner for arbitrary network 

topology.  

Next, we show the action rule for an arbitrary network 

[10]. We define the set of nodes that are adjacent to node 

  as   . We also define discretized time as   . The 

 (    ) at next time of the  (  ) at time   (     ) 

of node   is as following.  

  (    )   (  )    ∑ (    
     (  )      

    (  ))

    

 

 

(5)

 

where     
     (  )   and     

    (  )  are the variations of drift 

effect and diffusion effect within unit of time. Here, we 

define     
     (  ) and     

    (  ) as following.  
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     (  )  {

       (  ) (    (  )   )

        (  ) (    (  )   )
 

 

(6) 

    (  )   ( (    )   (    ))  (7) 

 

    
    (  )     (  (  )    (  )) (8) 

We explain about the above equation. Because the drift 

effect emphasizes peaks of the distribution, a part of the 

distribution moves to   from   (to   from  ) in the case of 

    (  )    (    (  )   ). That is, a part of distribution 

moves to nodes having the smaller potential value from 

nodes having the larger potential value. Here, equation 

    (  )       (  ) holds. On the other hand, because the 

diffusion effect flats the distribution, a part of the distri-

bution moves to   from   (to   from  ) in the case of 

  (  )    (  ) (  (  )    (  )).  

Next, we explain how to determine the potential func-

tion   (  ). The value of the potential function   (    ) 

of node   at time      is as follows:  

 

  (    )   (  (  )     ∑(    
    (  )      

    (  ))

    

)  

 (9) 

where the     
    (  )  is variation created by the back-

diffusion of   (  ) to   from   within unit time. Here, we 

require attention for deciding the variation     
    (  ) be-

cause the variation      
    (  )  has possibilities to act 

against our purpose. For example, nodes which are not 

peaks of the distribution have possibilities to be empha-

sized as peaks of the distribution when the variation 

    
    (  ) gives values to multi-nodes. Thus we define the 

variation      
    (  ) for networks as transferring the value 

towards a node having largest value among adjacent 

nodes. From the above discussion, the variation      
    (  ) 

is given as follows: 

    
    (  )  {

  (  )    (  )  (   
      (  )    (  ))

   (         )
 

 (10) 

   
   (  )     (   

    

(  (  )    (  ))   ) (11) 

Also, the value of parameters     needs to satisfy 

    
 

    

 (12) 

where      is the maximum degree of nodes in the net-

work. This is because if the value of the parameters     

are larger than that of (12), the values of some nodes be-

come negative value by the diffusion effect.  

Next we explain how to decide clusters. Clusters are 

based on local maximal value. That is, when each node 

tracks along the direction of the steepest ascent of the 

distribution, each node reaches local maximal value of 

the distribution. By basing on this idea, a cluster is de-

fined by nodes reaching the same peak, and each point 

having maximal value is a cluster-head. 

III. SELF-ADJUSTMENT MECHANISM 

The above mentioned mechanism can form cluster 

structures by basing on the predefined local rule of (1). In 

this procedure, we need to adjust the balance between the 

drift effect and the diffusion effect, in advance. Here, we 

consider about how to set parameters of these effects (Fig. 

4). If we set parameters with the drift effect stronger than 

the diffusion effect, some peaks are over-emphasized by 

the drift effect. Therefore spacial structures are not 

formed when we set parameters with the drift effect 

stronger than the diffusion effect. On the other hand, if 

we set parameters with the diffusion effect stronger than 

the drift effect, we can get spacial structures with a cer-

tain spatial size. Thus we have ever set parameters with 

the diffusion effect stronger than the drift effect in simu-

lation studies. However, if we set parameters like that, the 

magnitude of the amplitude of the distribution decays to 

zero exponentially. This is because the diffusion strongly 

affects the amplitude of the distribution. Of course cluster 

structures are maintained even if time progresses because 

the amplitude of the distribution has no relation with clus-

ter structures. However, when drastic change like the 

fusion of subnetworks occurs, they have different ampli-

tudes, in general. This causes that cluster structures in a 

subnetwork having small magnitude of the amplitude 

cannot maintain when the fusion of different subnetworks 

occurs because a subnetwork having large magnitude of 

the amplitude has a huge effect on the cluster structures. 

Although one solution for the problem is to become the 

diffusion effect equaling to the drift effect by setting pa-

rameters, it is difficult [14]. 

 
Fig. 4. Balance between drift effect and diffusion effect 

We can consider two approaches to solve this problem. 

One is an approach to stop the smoothing efect of the 

distribution. This approach is discussed in [14]. In this 

approach, nodes record a value of the distribution of each 

time, and each node uses a value of the distribution of the 

same time even if in different subnetworks. Thereby, this 

approach can uniformize the magnitude of the amplitude 

between different subnetworks. Another is an approach to 

keep a balance between drift and diffusion effects adap-
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tively, by self-adjustment. In this approach, we do not 

need special configuration like a memory to record the 

value of distributions required in a prior approach. Thus, 

this paper discusses the later approach. 

To consider about the approach based on self-

adjustment, we need to consider relative strength between 

the drift effect and the diffusion effect. In conventional 

mechanism, since the relative strength decided by setting 

parameters does not change even if time progresses, the 

amplitude of the distribution continues to decay in the 

case of the diffusion effect stronger than the drift effect. 

Hence we consider a mechanism that adjusts the relative 

strength autonomously even if time progresses in order to 

become the diffusion effect equaling to the drift effect. 

The concept of the mechanism is as following: If the drift 

effect is stronger than the diffusion effect, the mechanism 

changes autonomously the diffusion effect to strong ef-

fect. On the other hand, if the diffusion effect is stronger 

than the drift effect, the mechanism changes autonomous-

ly the diffusion effect to weak effect.  

 
Fig. 5. Concept of self-adjustment mechanism 

Thereby, the mechanism can equalize the two effects 

autonomously. 

By basing on the above concept, we introduce a func-

tion changing the relative strength to the diffusion term of 

(1). Here, to introduce the function, we use the fact that 

the gradient of the distribution becomes likewise larger 

when the magnitude of the amplitude becomes larger. 

Also, to use the fact is suitable for autonomous decentral-

ized control because the gradient of distribution is decid-

ed by only local information. From the above discussion, 

we use the function as a diffusion coefficient which de-

pends on the absolute value of the gradient of distribution, 

and try to govern the strength of diffusion effect adaptive-

ly. Let us introduce the extended local action rule  (   ) 

as follows:  

 (   )      (   ) (   )      (|  (   )|)  (   )  
 (13) 

where  (|  (   )|) is a function to adjust the strength of 

the diffusion effect.  

The actual form of the function  ( ) should be deter-

mined according to the following three conditions. 

  ( ) should be monotonically increasing function.  

  ( ) should have the upper-bound. 

 In order to keep the amplitude of distribution at an 

appropriate value,  ( )  should have large gradient 

around the corresponding value of |  (   )| 

 
Fig. 6. Typical example of function  (|  (   )|) satisfying the three 
conditions 

The first condition is required for stabilizing the ampli-

tude of the distribution. Since the larger value of 

|  (   )| means stronger drift effect, stronger diffusion 

effect is required. Therefore,  (|  (   )|)  should be-

come large. Conversely, for small value of |  (   )| , 

 (|  (   )|) should become small. The second condition 

concerns the limitation (14) of the maximum value of 

diffusion coefficient. In the case of (13), the parameters 

    need to satisfy 

 (|  (   )|)    
 

    

 (14) 

Then if the function does not have the upper-bound, 

we cannot set the value of the parameters    . Converse-

ly, if   has the upper-bound, we can set the parameters 

    to satisfy the condition (14). The last condition con-

cerns the position of the equilibrium in self-adjustment 

mechanism. Let us consider that appropriate magnitude 

of the amplitude is featured by the corresponding gradient 

|  (   )|   . Then,   should be the equilibrium. This 

means that the gradient of  (|  (   )|)should have larg-

er value around |  (   )|   .  

From the above discussion, we can choose 

 (|  (   )|)  
 

    (|  (   )|    )
 (15) 

as a typical example of the function  (|  (   )|) satisfy-

ing the above three conditions. This function is the lo-

gistic curve shown in Fig. 6. Here in Fig. 6, the vertical 

axis of the results expresses the value of the function  , 

and horizontal axis of the results expresses the magnitude 

of the amplitude. In this example, parameter     need to 

satisfy the limitation  

    
 

    

 (16) 
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because the upper-bound of   is 1. This is the same con-

dition as (12) in the previous mechanism. 

 
Fig. 7. Initial distribution 

TABLE I:  PARAMETER SETTING (1) 

 randomized structure patterned structure 

                 

           

              

IV. EVALUATION FOR ASYMPTOTIC STABILITY OF 

CLUSTERS 

In this section, we verify that our mechanism can con-

verge the amplitude of the distribution on a finite constant 

value, through simulation.  

A. Simulation Methodology 

In this subsection, we explain simulation methodology 

of the verification. In this verification, we use a unit disk 

graph having torus boundary to exclude the influence of 

the boundary. We can obtain the unit disk graph through 

following procedure. We arrange some nodes randomly, 

and then we set a circle of certain length around each 

node. If nodes are inside the circle, we set links for these 

nodes. Here, since we can assume the circles as wireless 

communication range, the unit disk graph is one of the 

models which can express the topology of MANETs. 

Also, we set 1,600 nodes on a plane of 1 km × 1 km, and 

use 60 m as communication range. We also use two ini-

tial distributions as Fig. 7 in which the value of distribu-

tions is described by using color map. The left figure in 

Fig. 7 expresses randomized structure. Here, the value of 

the left figure in Fig. 7 is set to random value using the 

uniform distribution between [0, 10]. The right figure in 

Fig. 7 expresses patterned structure. Here, the smaller 

valued area of the right figure in Fig. 7 is set to random 

value using the uniform distribution between [0, 1], and 

the larger valued area of the right figure in Fig. 7 is set to 

random value using the uniform distribution between [0, 

10]. For example, we can assume the value of the ran-

domized structure as battery energy. We also can assume 

the patterned structure as an environment having power-

supply. We show parameters used in the evaluation in 

Table I.  

We use two evaluation indexes. One is that the ampli-

tude of the distribution can converge on a finite constant 

value from two initial conditions. The other is that the 

mechanism can maintain the characteristic of our conven-

tional mechanism. In the former evaluation, we consider 

a way to evaluate as follows. First we estimate a conver-

gence value for the time progress of the amplitude. Sec-

ond we subtract the estimated value from the amplitude. 

Finally we plot the differences in semi-log scale, then if 

the differences decayed to zero exponentially, we consid-

er the magnitude of the amplitude as converging on a 

finite constant value. In later evaluation, we verify that 

the mechanism can form cluster structures based on ini-

tial distribution by using the patterned structure. Here, if 

cluster structures formed by self-adjustment mechanism 

are same structures with cluster structures formed by our 

conventional mechanism, we assume our mechanism can 

maintain the characteristic of our conventional mecha-

nism. 

B. Evaluation 

 
Fig. 8. Temporal variation of amplitude for randomized structure 

 
Fig. 9. Temporal variation of amplitude for patterned structure 

In this subsection, first we evaluate whether the magni-

tude of the amplitude converges on a finite positive con-

stant. Fig. 8 and Fig. 9 show the results in which we sub-

tract the estimated value from time progress of amplitude 

and plotted in semi-log scale. Here, the vertical axis of 

the results expresses the magnitude of the amplitude, and 

horizontal axis of the results expresses the time. From the 

result of Fig. 8 and Fig. 9, we can see that the mechanism 

can converge on a finite constant. Here, we estimated the 

value of convergence as 0.2 in the randomized structure, 

we also estimated the value as 1.4 in the patterned struc-

ture. Next we verify that the advantage of our conven-
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tional mechanism is inherited to the self-adjustment 

mechanism. The advantage of the prior mechanism is to 

form cluster structures based on initial condition. Hence 

if cluster structures formed by our mechanism are same 

structures with our conventional mechanism, we can con-

firm that our mechanism can maintain the characteristic 

of our conventional mechanism. The left panels of Fig. 10 

and Fig. 11 describe the value of the distribution and the 

right panels of the Fig. 10 and Fig. 11 describe cluster 

map that different clusters are denoted by different colors. 

Also, Fig. 10 is the result of self-adjustment mechanism. 

On the other hand, Fig. 11 is the result of our convention-

al mechanism. By comparison with cluster structures 

formed by prior mechanism, we can see that our mecha-

nism has the same characteristic with prior mechanism. 

From the above evaluation, we verified that our mecha-

nism can maintain the amplitude of distribution, and can 

maintain the characteristic of our conventional mecha-

nism. 

 
Fig. 10. Cluster structures formed by self-adjustment mechanism 

 
Fig. 11. Cluster structures formed by conventional mechanism 

TABLE II:  PARAMETER SETTING (2) 

parameter value 

         

       

         

 

Next, we consider the different model for comparison. 

Let us consider the case that a function g does not satisfy 

the abovementioned conditions. As an example of the 

cases, we set 

 (|  (   )|)  |  (   )|  
(17) 

We show parameters used in the evaluation in TABLE 

II. Here, since   is an unbound function, parameter     is 

strongly restricted. Also the function does not have large 

gradient around the corresponding value of |  (   )| . 

Hereby, we can consider that drift effect and diffusion 

effect cannot balance because the function does not have 

large gradient. From the result of Fig. 12 that describes 

cluster structures, we can see that cluster structures do not 

depend properly on characteristic in networks’ initial 

conditions as compared to result of the prior mechanism 

in Fig. 11. Thus we can expect that the conditions are 

needed in order to achieve the self-adjustment mechanism.  

 
Fig. 12. Cluster structures formed in the case of different function 

V. EVALIATION FOR THE FUSION OF SUBNETWORKS 

In this section, we verify that our mechanism can 

maintain cluster structures based on initial distribution 

even if the fusion of subnetworks occurs. 

A. Simulation Methodology 

 
Fig. 13. Summary of the simulation model 

To assume the environment in which the fusion of dif-

ferent subnetworks occurs, we consider a model as fol-

lowing in our simulation (Fig. 13). First we use the unit 

disk graph as network topology, and we set a partition 

which can interrupt communication as Fig. 13 in order to 

divide a network into two subnetworks. Next we change 

only the time of one of their subnetworks, and then we 

remove the partition. Here if we use the conventional 

mechanism, the amplitudes of subnetworks exhibit differ-
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ent behaviors. Finally we change time, that is, we create a 

fusion of subnetworks. Then we verify which mechanism 

can effectively maintain cluster structures based on initial 

distribution.  

TABLE III:  PARAMETER SETTING (3) 

 conventional mechanism proposed mechanism 

              

           

               

 

In this verification, we use a unit disk graph having to-

rus boundary to exclude the influence of the boundary. 

We set 1,600 nodes on a plane of 1 km × 1 km, and use 

60 m as communication range. We remove a partition at 

time 1,000, and then change the time till 2,000. As initial 

condition, we use the patterned structure in Fig. 7. We 

use this initial condition as the index of this evaluation. 

This is because we can verify easily whether cluster 

structures are based on initial condition even if the fusion 

of subnetworks occurs. 

B. Evaluation 

Before the verification of our mechanism, we need to 

verify that the conventional mechanism cannot maintain 

cluster structures based on initial distribution when the 

fusion of subnetworks occurs. From the result of left pan-

el in Fig. 14, we can confirm that the magnitude of the 

amplitude between subnetworks varies. From the result of 

right panel in Fig. 14, we can also confirm that cluster 

structures are not based on initial distribution. This is 

because cluster structures having the huge amplitude 

strongly affect clusters formation. From the results, we 

confirmed that cluster structures formed by prior mecha-

nism are not formed based on initial distribution when the 

fusion of subnetworks occurs.  

 
Fig. 14. Fusion of subnetworks in the case of conventional mechanism 

Next we verify the effectiveness of our mechanism. 

rom the result of left panel in Fig. 15, we can recognize 

that the magnitude of amplitude between subnetworks 

varies but it is smaller than the result of Fig .14. Also, 

from the result of right panel in Fig. 15, we can recognize 

that our mechanism can form cluster structures based on 

initial distribution by comparison to cluster structures 

formed by the conventional mechanism in Fig. 11. From 

the results, we confirmed that our mechanism can form 

cluster structures based on initial condition even if the 

fusion of subnetworks occurred. 

 
Fig. 15. Fusion of subnetworks in the case of self-adjustment mecha-

nism 

VI. CONCLUSIONS 

In this paper, we proposed the self-adjustment mecha-

nism that adjusts the magnitude of the amplitude to be-

come the finite magnitude. In order to evaluate the effec-

tiveness of the self-adjustment mechanism, we verified 

whether the magnitude of amplitude converges on a finite 

positive constant by using two initial conditions that are 

important metrics ensuring the effectiveness of the mech-

anism. We also verified whether our mechanism can form 

cluster structures reflecting the characteristic of our con-

ventional mechanism. Finally we evaluated the effective-

ness of self-adjustment mechanism for an environment in 

which the fusion of subnetworks occurs. Future studies 

will investigate for topology change with movement of 

nodes. 
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