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Abstract— We propose a performmance measaremett method that uses
both activeand passive meastrement data toinfer the actual performance
seen by users. With this method, the performance for individual users,
organizations or applications ¢an alzo be estimated. Ar actual implemen-
tation of the proposed method is examined through simulation. We also
evaluated the estimation accoracy with respect to both the weasurement
interval and the number of measuremenis

I. INTRODUCTION

Performance measurement is crucial in controlling, manag-
ing, and provisioning networks. In general, methods of mea-
suring network performance are divided into two types: active
and passive .

Active methods monitor the performance of a network by
sending probe packets and monitoring them. Many active
monitoring tools have been developed to monitor network per-
formance [1]. They generally monitor the performancs of the
probe packets sent periodically to infer the performance of
users’ packets.

If we can assume that active monitoring measures the time
average of network performance and that the user traffic is
Poissonian, then the performance experienced by the users
and the actively measured performance will be the same. This
well-known property is called PASTA (which stands for “Pois-
son Arrivals See Time Average™). It is known, however, that
current Internet traffic exhibits burstmess and is not Poisso-
nian, in general [2]. In this case, more user packets are
transmitted during congested periods, which means that more
user packets experience worse performance. Thus, the perfor-
mance experienced by users may actually be worse than that
measuted by petiodical active monitoring. On the other hand,
Operation, Administration, and Mantainance (OAM) c2lls are
standardized for fault and performance management in ATM
networks. They are sent every fixed number of user c¢lls and
they measure the network performance. There are studies ap-
plying this mechanism to IP networks [3] [4]. With this mech-
anism, the performance statistics seen by probe packets agree
with those seen by users. But this mechanism seads more
probe packets as the user traffic volume grows, so more ad-
ditional traffic will be injected during congestion periods. In
addition, implementation of these mechanisms requires tight
transmission control of probe packets.

Passive methods capture packets and determine the network
performance using their data. For example, by comparing two
sets of time-series data captured with monitoring devices de-
ployed at ingress and egress of the network, we can determine
the delay and loss of these packets. By measuring the network
performance in a the passive way, we can measure the perfor-
mance experienced by users. However, these methods require
identification of each packet by its header or content, which
is hard when the packet volume is huge, as in a high-speed
network. .
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In this paper, we propose a new perfortnance measurement
method for estimating the actual network performance experi-
enced by users. Our method combines both active and passive
monitoring using easy-to-measure methods. It can estimate
not only the mixed performance experienced by all users but
also the actual performance for individual users, organizations,
and applications. In addition, it is scalable and lightweight.

The rest of the paper is organized as follows, In section II,
we give a mathematical formalization of the framework of our
method. In section III, as an application of the method, we
propose a simple method for estimating the actual delay expe-
rienced by users. We also show the validity of the method
through simulation. In addition, we extend our method to
estimate the performance experienced by an individual user.
The accuracy of the estimation is investigated in section IV in
terms of the measurement interval and the number of measure-
ments. Finally, we conclude the paper in section V.

Il. PROPOSED MEASUREMENT METHOD

Our measurement method, COMPACT Monitor; change-
of-measure based passive/active monitoring, is based on a
change-of-measure framework. It is scalable and lightweight
and enables accurate estimation of detailed characteristics of
performance for individual users, organizations, and applica-
tions. The combination of simple measurements of both active
and passive types enables the change-of-measure framework.

A. Estimation of User Performarce

Let X be the measurement objective, e.g., the delay for user
packets, whose distribution function is P. The distribution of

A is written as
j Ly 4P(R).

PriX>a) =
= B [l{ba}]' O

Let us consider how to estimate the distribution of X. Suppose
there are n arrivals in a measurement period, e.g., n packets
arrived. X(i) denotes the i-th vafue of .X. Then an estimator
Zy(n,a} of distribution (1) can be obtained by using X{i) as
follows: )

1 B
Zma)i= 5 3 Lrigsay @

Actually, if X(7) is ergodic, then 1 H>a) is also ergodic for
arbitrary a € R. Thus,
'}i_ﬂzx(n,a) = Pr(X>a)as. (3)

Suppose we have a situation in which it is difficult to mea-
sure X (i) directly, and an estimate of its distribution cannot
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Fig. 1. Relationship between ¥ {f) and X(3), ¥ (/)

be obtained with (2). Let ¥(t) be the network performance at
time ¢ such that if the i-th arrival oceurs at ¢, then P (1,) = X (i}.
Also, let ¥ be the value of ¥ (t) measured independently of the
system behavior, and let the distribution function of ¥ be Q.
We consider estimating the distribution of X" using the dis-
tribution of Y. We assume that for 2,6 € R, .
P(b)—Pla) > 0 = Q(b)— Qa) > 0. C)]

Because P is the distribution of the network performance seen
by packet arrivals and @ is the distribution of the measured net-
work performance, this assumption indicates that the network
performance that packets experience with a positive probabil-
ity can be measured with a positive probability. This is natural
when the measurement lasts long enough. and the indepen-
dence of the measurement to the system behavior, We can
then define dP/d( and rewrite the distribution of X given in
(1) using the change-of-measure as
dary)

Pr{X>a) = f Ly 3y 420)

= B [1{Y>n'} ad%] -

Now, suppose ¥ is measured m times, and let ¥ () be the j-
th measurement at 5, such that ¥ (/) = ¥{s) (j=1,2,...,m}
(Fig. 1). Then an estimator of Pr(X > a) can be derived using
Y () as follows:

%

Zy(m,a):= % g Lygsa LU - (©)
whare 4P (j))
0= ety ™

which we call the likelihood ratio. Equation {3) also holds for
Zy(m,a) as

mli_!&ly(m,a) = Pr(X>a)as. (8)

If we can derive L(J), then the estimator of the distribution
of X can be derived with the measurement values of ¥. The
fundamental concept of our method is as follows: Although
estimation of the distribution Pr(X > a) from direct measure-
ments of X is difficult, values ¥ (f} and L(;) can easily be mea-
sured by active and passive monitoring, respectively, and we
can easily estimate the distribution Pt(X > a) using them. The
derivation of likelihood ratio is described in the next subsec-
tion.

B. Likelihood Ratio

Let py(7, ) be the traffic volume (e.g., the number of pack-
ets) arriving 1n an interval [¢,¢ + 8(t)). Let py(z,8) be the
number of measurements in ¢, + 6(t)). We assume that the
interval &(r} is short enough compared with the time variance
of ¥ (¢) so that

V(s) =¥ () for ¥s,s' € [t,1 + (1)) )]
This assumption indicates that one measurement of ¥ in the
interval [t,f + 8{r)) can be interpreted as py{t,8)/pyit,8)
measurements of X. Note that we can always define
Px(s;,8)/py(s;, 8) because at the time 5; of measurement
¥{/), we have py(s;,8) > 0. Then the likelihood ratio can

be obtained as
5. 'F_ 5.
1) P Prls)
pr(s;)/ 2 pY(Sj)
The likelihood ratio (10) can be obtained by passive mea-
surement, and the distribution: of X is estimated as
1 )E Px(s;8)
Ej—] Pr sj) =1 {YO)”} Pr ( »6)
(Recall that Z;;l Py (s ) = m).

We can also derive an estimator of the mean of X, My (m),
in a similar way to that for the distribution of X. This estimator

is 1 P)((-"j»a)
My(m) = Y .2
S v en DI v it M)
C. Advantages of Ovr Method

We can expect our method to have the following advantages.
(1) Since the extra traffic for active probe packets is negligi-
ble, user traffic is little affected. (2) We have a dependable
estimation of the QoS/performance measure. (3) Since pas-
sive measurement is only required for counting the amount of
traffic (the number of packets), the passive monitoring devices
are simplified.

ITI. DELAY ESTIMATION

As an application of the method proposed in the previous
section, we propose a simple method for estimating the actual
delay experienced by users that is easy to implement.

A. Theoritical Basis

LetY(j) (j=1,2,..., m)be the detay measured with probe
packets, such as ping, at time s;. The probe packet interval
5,415 is chosen 1o be a constant 7, and §(s,) is also chosen
to be the same interval,for a simple implementation!. Then
suppose that the number of user packets arriving in [s rLr +,)
is p(j,7) and the total number of packets arriving in the mea-
surement period is X7 p(/,7) = n. As an example of a
delay estimation case, ¥ (t) is considered as the virtual wait-
ing time of the network, which is the delay for a packet ar-
riving (virtually) at t. If we assume that T is short enough
compared with the fluctnation of ¥ (t), then we derive the es-
timator of the packet-delay distribution by applying (11) for
Px(s)>8) = U, %), Prls 8 = 1,20 8(s ) = T as

1To eliminate influence of pericdical network behavicr, we can use expo-
nentially distributed intervals.

(10)

Zy(m,a) = (11)
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Fig. 2. Network configurstion for simulation,

1 .
Zy(m,1,a0) = = j=21 l(yu);,,}P(J,f)- a3
The estimator of the mean user packet delay, My(m, 7), is also
obtained as
1 "
My(m,7)= - ¥ ¥(/)p(i%). (14)
J=l

As can be seen from (13}, estimating the user delay requires
measuring the network delay periodically with active probe
packets and measuring the mumber of packets arriving between
active measurements, which is far easier than measuring the
delay for user packets directly with two probes deployed at
the network edges.

The assumption that T is short compared with the fluctua-
tion of ¥(¢) is crucial for the estimation, so, we evaluate the
relationship between the measurement interval 7 and the esti-
mation accuracy in section IV.

B. Evaluation

To demonstrate our simple application described abcve, we
used the ns2 [5] network simulator. Figure 2 shows the net-
work topology for the simulation. Sixty sources were con-
nected to a bottleneck router via 1.5-Mbps links, and two
routers were connected via a 10-Mbyps link*.

We measured the queueing delay at the botileneck router
which did not inchide the service time for the packets them-
selves, Other simulation conditions are as follows:

+ The user packets were generated by ON-OFF sources. We

tested that the ON and OFF durations were distributed as
iid. exponentials and pareto. The mean ON duration
was 1 s and the mean OFF duration was 14 s. For the
pareto disttibution, the shape parameter was chosen as
15,

+ The user packet size was fixed at 1000 bytes.

+ The transport protocol for the user packets was TCP.

« Probe packets for actively measuring the queueing delay
were generated every second. The size of each probe
packet was fixed at 64 bytes.

Figure 3 shows a sample path for the user packet delay,
probe packet delay, and number of user packets arriving be-
tween probe packets for the case of exponential ON-OFF
sources. [t can be seen that the delay measured with probe
packets captures the time variance of delay for the user pack-
ets well. However we can also see a fluctuation in the number
of packets, which is synchronized with the delay fluctuation.

2In this paper, we only show the results for the single-bottleneck case, We
have also evaluated our method for the multiple-bottleneck case, and found
the bottleneck queneing delay to be the same as for the single bottleneck case,
as can be expected from section Il
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Fig. 3. Sample path for number of packets arriving and delay for user packets
and probe packets in simolation.
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Fig, 4. Distribution of queueing delay for packets generated by exponential
on-off sources, probe packets, and estimator,

This fluctuation causes the discrepancy between the distribu-
tion of delay for bursty user packets and periodical probe pack-
ets, because the number of packets with worse delay is larger
for user packets than probe packets.

Figures 4 and 5 show the delay distributions of user packets,
probe packets and an estimation. As expected from the sample
path, we can observe the discrepancy between the distribution
of user packet delay and that for active measurements. Using
our proposed method, however, user delay can be estimated
with high accuracy by active measurements.

C. Estimation of Individual User Delay

We describe here an extension of our measurement method,
which estimates the packet delay for individual users with one
series of active measurements and passive traffic monitoring.

Let X, be the packet delay of user k (k= 1,2,...,X) and
¥Y(7}(j=1,2,..., m)be the delay measured with active pack-
ez, such as ping, at time 5,. Let the number of packets for
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Fig. 5. Distribetion of queneing deiay for packets genersted by Pareto on-off
sources, probe packets, and estimator.
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Fig. 6. Estimations of delay distribution for two type of user.
user k arriving in [sj,sj+l) be p,(/, 7), and the number of total
packets for user k is

m = i £ 7) (15)
Then the likelihood ratio forj;;er kis :
L= Pyl )
and we can obtain the estimator as follows:
Zpy(m,T,0) = ”lk ,)::i LyppaPtUh?h (D)

Thus, by counating the number of packets arriving for each
user, we can estimate the delay experienced by individual
users.

The classification of traffic is not limited to individual users
or groups of users but can be extended to applications. The
performance for packets may differ depending on the applica-
tion because its traffic pattern differs depending oa its appli-
cation. Using our method, we can monitor the performance
for each application with one series of active measurements,
provided that packets for every class are treated with the same
priority in the network.

We tested this extension by simulation., We separated the
60 sources from the simulation run in subsection III-B into
5 bursty sources and 55 non-bursty sources. For the bursty
sources, the ON-OFF durations were distributed in a Pareto
distribution with shape parameter of 1.5, where the mean ON
duration was 1 second and the mean OFF duration is 14 sec-
onds. For the non-bursty sources, the ON-OFF durations were
distributed exponentially, where the mean ON duration was 10
seconds and the mean OFF duration was 5 seconds The other
parameters were the same as before.

Figure 6 shows the distribution of the user packet delay and
the distribution estimated using (17). Our method could esti-
mate the distributions of both groups of usets with high accu-
racy from one series of active measurements.

IV. ESTIMATION ACCURACY
A. Relationship between estimation accuracy and probe inter-
vals

Our estimation described in subsection I1I-A is based on the
assumptions expressed in (9); that is, the delay of user pack-
ets is assumed to be almost the same throughout an interval
7. Hence, we expect the accuracy to improve with a shorter
interval for active measurements. In this section, we analyze
the accuracy of the method, especially for estimating the mean
delay.

-
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Fig. 7. Measured and estimated mean delay for various measurement inter-
vals.

We ran simulations varying the measurement interval from
62.5 ms to 8 5 and observed the changes in the discrepancy
between the actual and estimated delay. For each measure-
ment interval, five simulations were performed. The simula-
tion conditions were the same as in subsection III-B except for
the measurement intervals. We compared the mean delays for
user packets, probe packets, and the estimator.

Figure 7 shows the results. The mean delay for user packets
was about 11 ms, though that for probe packets was around
7 ms. In this case, the simple measurement using probe pack-
ets underestimate the queueing delay by about 40%. Also
the estimator approximates the user delay with high accuracy
when the interval is smaller than 1 s, which is the same as the
mean ON duration. But as the interval increases, the estima-
tion eIror increases.

Below, we consider the accuracy of the estimation in terms
of the mean and the variance of the estimation error.

B. Mean of the Error
If the system can be assumed to be stationary, then we have

Bliymo] = FE[r0)Y] a®)
=1
= mE [Y(l)ﬂn‘—} (19)
= E{F(1)]+Cov[r{1),A1})}, (20}
where A¢(j) is defined as
k()= py, @

whose mean is equal 1o 1. (Hereafter we simply write E[Y] or
Cov{Y, A instead of E[Y ()] or Cov{¥{/), A/
We also have
Ey(n)] =Elf]+ ImCovit,Ad. (@)

if we can assume that the probe packet is small enough. E [Y]is
the mean delay measured with probe packets and is indepen-
dent of the measurement interval. When lim,_,Cov[Y, ]
is zero, E[¥] agrees with the mean delay of user packets.
The estimation error is evaluated from the difference between
Cov[¥,A;] and lim, ,Cov[V,A,]. -

Figure § plots the mean of Cov[Y, A] and 95% confidence
intervals for the five simulations. We can see that the covari-
ance decays as the measurement interval increases. This is
natural because the correlation between traffic intensity mea-
sured at a fixed interval and queueing delay decreases as mea-
surement interval increases. We can also see that the covari-
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ance converges 1o a constant value, which is expected to be the
lim,_,Cov[¥,A;], as the interval approaches zero. Thus, we
can roughly estimate the appropriate measurement interval for
required accuracy. For example, if we require 2-ms accuracy
and assume lim__,Cov{¥,A,| is about 5 ms, then measurs-
ments every 2 s are enough to achieve required accuracy. Note
that, in this estimation, we use only available measurement
values such as packet counts and probe delays.

C. Variance of the Error
The estimation aror can be written as

My(m,T)—My(n) = Z (2 (Y(n-—-xi (:))) 23)

=1 \i=t

where X7(i) is the delay of the i-th user packet an'ivi.ng in the
J-thmeasurement period.

First, we evaluate the variance of the value in the second
bracket in (23). We define the conditional variance of the value

for p(5), E. (p{})), as

18]
E(p()) = Va LZI () -x@)

pm}aﬂ

We also define the conditional variance and auto-covariance
functions of ¥ {t) for p(j) as VP(J) () and Cpm (1), respec-

tively. For a rough evaluation, we assume p{j} user-packets
arrive in the constant intervals between probe packets, We
also assume the system to be stationary. Then

wlb (o) e

(k2+k) Var [1,(0)]
ZZ'C* (k+1)

Therefore, the unconditional variance of the sum of the errors
for one measurement can be calculated with the distriburion of
the number of user packets P, = Pr[p(j) = ] as

[Zwo ﬂwﬂ:inma (26)
i=1 k=1

If we can also assume that the sums of the error for different
measurements are independent each other’, then

V.ik)y =

12

|

3We confirm this independencs from the auto-correlation function whose
values are alinost zero for both exponential and Pareto distributed On duration,
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Fig. 9. Vartance of the error against the various number of measurements

Var [My {m, T) — My (n)] ~ Z Ve(k} Py, @n
It may be observed from (27) that, if the measurement interval
is fixed, then the variance of the error is inversely propotional
to the number of measurements (Note that » increases linealy
as m increases).

Note that, we can obtain the conditional auto-covariance

fanction Cp 0 {t) and the distribution P, from the measure-

ments of packet counts and probe delays. Figure 9 shows a
plot of the variance of the estimation error and the estimated
variance of the estimation error using (27) against the number
of measurements. The simulation condition is the same as in
I11.B, and to obtain Cp o {t) and Yot (t), we ran the simulation

with probe interval as 100 ms, which is ten times shorter than
the normal measurement. We can see that the variance decays
as the number of measurements grows and the variance calcu-
lated from {27) estimates the variance of the error fairly well.

V. CONCLUSION
In this paper, we proposed a performance measurement
method called CoMPACT Monitor; change-of-measure based
passive/active moniloring, which can estimate user perfor-
mance in a scalable and lightweight manner. We validated this
method by simulations, which showed that our method gives
a good estimation of the performance seen by a user. We ex-
tended this method to estimate individual user performance,
and confirmed the validity of this approach by simulation. We
also tested the applicability of the method in terms of estima-
tion accuracy. We found that the mean of the estimation er-
ror depends on the measurement intervals and the variance of
the error depends on the number of measurements. We have
implemented our method and are now evaluating it on a real
environment.
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