OPTIMAL ROUTING IN COMMUNICATION NETWORKS
WITH DELAY VARIATIONS

Masaki Aida, Ichizo Nakamura and Teruyuki Kubo

NTT Telecommunication Networks Laboratories
1-2356 Take Yokosuka-shi Kanagawa, Japan

ABSTRACT This paper addresses the problem of optimal
routing in packet switched networks. Optimality is discussed
in terms of end-to-end delay. We take into account the
variance of delay as well as its mean value. Achieving optimal
routing is necessary for multimedia networks to fully support
real-time services. We model a network as a weighted graph
with its link weights representing link delays. We assume that
the delay statistics conform to a normal distribution. In the
course of analysis, we show that this type of routing
optimization problem can be formulated as a process of
searching for a specific point in a coordinate system defined
by the mean and variance of the end-to-end delay. This paper
presents an efficient algorithm for finding the optimal point in
this coordinate system.

I. INTRODUCTION

With the evolution of multimedia services, development of
integrated transport mechanisms to support them is strongly
desired. Among several candidate mechanisms, transport
integration with a packet switching technique is the most
promising. Transporting real-time traffic over a packet
switched network, however, introduces new technical
challenges; the most critical problem is to minimize the end-to-
end delay of packets across a network.

In the past, various ways have been offered for routing in
packet switched networks. Their main goal is to minimize the
mean value of end-to-end delay across the network[1]. This
class of problem is rather tractable and can be efficiently
solved by applying the well-known Dijkstra's algorithm[2].
Network delay as perceived by end users, however, is
determined not only by the mean value but also by its
variance.

Associated with each telecommunication service, there
exists a maximum permissible delay that should be guaranteed
to obtain satisfactory quality. Let us take interactive voice

communication as an example. Voice packets received by the
listener side terminal are temporarily stored in a buffer before
they are played back to smooth out the packet delay jitter. Play
back is performed according to a continuous clock source. The
required amount of storage must be long enough to make the
chance of buffer overflow/underflow reasonably small; a
situation that may occur with excessive packet delays.
Furthermore, packets that experience delays longer than a
certain value will be too late for play-back and must be
discarded at the receiving buffer.

Thus, to obtain satisfactory service quality, the routing
should be designed to take the fluctuation of delay into
account. Studies of routing that consider delay fluctuations,
effectively support various types of traffic on the same

network[3]. As opposed to the optimal routing in terms of
mean delay minimization, this class of problem requires a
different formulation. As will be described later, Dijkstra's
algorithm cannot directly be applied.

Based on the above analysis, we will first formulate the
routing problem as the minimization of the probability that
packets exceed the maximum permissible delay (sec.2). We
model a network as a graph with its link weights representing
delays and assume that the delay statistics obey a normal
distribution. Our problem is regarded as a stochastic version
of the shortest path problem on a weighted graph. Ichimori
et.al.[4] treat a related problem which deals with a minimum
spanning tree. We will show that the treatment proposed in
their paper can be efficiently used as one tool to solve our
problem (sec.3). Their treatment, however, is not sufficient to
solve the stochastic shortest path problem by itself. A shortest
path problem is a more difficult class of problem than the
minimum spanning tree problem and requires some
extensions. Next, we show that the optimization of routing in
our problem is equivalent to searching for a specific point in a
coordinate system determined by the mean and variance(sec.4)
of end-to-end delay. Using this formulation, we construct a
simple and efficient algorithm for the problem (sec.5) and
evaluate performance in terms of the relationship between its
time complexity and estimation error(sec.6).

1I. OPTIMAL ROUTING PROBLEM

We represent a network as a graph G = G(V,E) where V is
the set of nodes and E is the set of links connecting the nodes.
Each link denoted by e(i) or simply i has a weight c(i) that
represents delay experienced by packets on the link. In
general, the value of c(i) fluctuates dynamically. We assume
that c(i) is an independent normal random variable
characterized by its mean m(i) and variance v(i). We further
assume that the mean m(i) and variance v(i) are stable over
time. We refer to c(i) as a stochastic weight. We treat a shortest
path problem between given two nodes in the following part
of this paper.

Let 7t denote a path between given two nodes in G and
I1={n} be the set of all paths between the given two nodes.

Given any path w, based on the independence assumption,
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the path weight C(r), its mean M(m), variance V(r), and
standard deviation S(r) can be expressed as:

C(m) =Y, c(i), M(m) = ¥ m(),

ien en
V(m) =Y, v(i) and S(x) =V V(m) . %))
ien

The conventional routing problems have been formulated
as finding a particular path 1t between two nodes from the set
of paths [T that minimizes the mean end-to-end delay. In this

formulation, the problem is expressed in the form:

minn M(n). 2

This problem depends only upon the mean value of delay
because eq.(2) does not take the variance of delay into
consideration. Previous studies show that this type of shortest
path finding problem can be solved efficiently by applying
dynamic programming techniques; e.g. Dijkstra's algorithm.

In contrast, our aim is to take the variance of delay into
consideration, so we formulate our optimal routing problem as
follows:

min Pr(C(x) > Cg), 3)
nell

where Co is a given positive real constant representing the
maximum permissible delay. The purpose of our optimization
is to minimize the probability that the end-to-end delay exceeds
a predefined value. Solving our problem expressed in this
form is mathematically intractable because of the presence of
the random variable C(r) in eq.(3). After a little manipulation
we can obtain an equivalent formulation [4]:

Co— M(m)
M s

This formulation consists only of deterministic variables
M(r) and V(rt) and thus is more tractable. Hereafter, we name
the function to be maximized an evaluation function of the path
T

)

Co—M(m)

E(xn,Cp) := Sm)

5)

I1II. APPLICATION OF DYNAMIC PROGRAMING
TECHNIQUES

Unfortunately, the evaluation function E(rt, Co) still has the
property that is hard to treat. This section explains what this
difficulty is and how it can be overcome.

Imagine the situation that there are three nodes (A, B and
C) and they are connected by three links as shown in fig.1.
Each link and path have weights that are evaluated by
E(m,Co). We further assume that link "b" is the optimal path
between nodes B and C. It can easily be shown that, if the
evaluation function E(%,Co) is used to evaluate the path/link
weights, the optimal path between node A and C does not
always include path "b" which is the optimal path between
node B and C. It means that the principle of optimality[5],
which is the basis for applying dynamic programming
techniques(6], is not effective when this evaluation function is

b
a C
node A node B node C
Fig.1 Example of Network I
used.

Hence, the well-known, Dijkstra’s algorithm cannot
directly be applied to our problem because the algorithm
employs the optimality principle.

To avoid the above difficulty, we introduce a new measure
for the link and path weights. The following approach is after
Ichimori et.al. [4] whose work deals with the stochastic
minimum spanning tree problem. This technique is also
effective in solving our problem. We introduce a positive
parameter X (has a dimension of 1/(time)) and define, the
weight (which we call x-weight) of a path « as:

Wy(m) := M(nt) + x- V() . (6)

Following this definition, the x-weight of the individual
link e(i) can be expressed as:

wy(i) = m(@) + x-v(i) . (@)

With this formulation of path and link weights, an end-to-
end path weight can be obtained by simply summing up the
weights of all links that comprise the path, i.e.,

Wy(m) = Y, m@) +x- Y, v(i)

ien ien
=Y () +x- V(i) = Y, Wx(@): ®
ien ien

Hereafter, we call wx(i) the x-weight of link e(i).

Next, we define the notion of x-optimal path between a
given pair of nodes. A path fx-opt(x) is x-optimal if its x-
weight satisfies the following minimization for a given value
of x=0.

minn Wym) . ®

In general, the configuration of the path 7x-opt varies with
the value of x. Let [Ix-opt denote a set of such optimal paths
and let mopt denote the real optimal path that satisfies the
original problem (eq.(4)).

The x-weight thus defined has a useful characteristic which
allows our problem to be solved. We show this in the
following theorem.

Theorem 1 : The real optimal path Topt is included in the
set [Tx-opt of x-optimal paths.

Teopt € Hx-opt' (10)

Proof : We prove this by contradiction. Suppose the real
optimal path Topt is not included in the set [Ix-opt. For any
path Tx-opt, including those in [Ix-opt, we can show the
following inequality.
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M(7ty.op) — M(Topy)

> E(Tlop,Col (S(Topd) — S(Tx-opp) - (11)

We can arbitrarily select the value of x as x' =
E(topt, C0)/(28(mopt)), and there should exist a corresponding
x-optimal path ©tx-opt(X') in ITx-opt and it should satisfy

Wx(nx—opt(x')) <WlMop) - (12)

However, it follows that
WxTx.opX')) — Wy(Top)
= M(Ttxop(X)) + X V(Ty.opX)) = (M@ope) + X-V(Topd)

E(mopyCo) N2 13
> Stmy | (ST = SEcapX)?>0. (13
Thus the contradiction. Q.E.D.

This theorem dictates that we can take the following steps
to solve our problem: first, we solve for the set of x-optimal
paths for the x-weight problem, to which the optimality
principle holds and can be solved efficiently with the
Dijkstra's algorithm; then we search for the real optimal path
from among the x-optimal paths.

IV. REPRESENTATION OF PATHS
ON (M,V)-PLANE

The main difficulty with the above derived approach is
how to find out all the x-optimal paths for a given graph. To
overcome this difficulty, we introduce, in this section, a new
coordinate system to analyze our problem. It turns out to offer
a useful means to systematically search for the x-optimal paths
and the real optimal path.

Specifically, our problem is formulated as searching for a
specific point in the plane.

In the following, we show how each x-optimal paths nx's
are represented as points in the plane. We then examine the
geometrical properties of the points in the plane that can be
used to shrink the domain where the target point should be
searched for.

The x-weight defined by eq.(7) is a linear function of x. In
general, any linear function is completely determined by
specifying two parameters, i.e., its slope and intersection at

the vertical axis. Here, we introduce a plane that is defined by
M-axis and V-axis, representing the intersection and slope of
the x-weight function respectively, which in turn represent the
mean delay of the corresponding path and its variance
respectively. On this plane, referred to as (M,V)-plane, each
path w is represented by a single point P=(M(x),V(n)) as
shown in fig.2.

Next let us examine the contours of the original evaluation
function, eq.(5), on the (M,V)-plane. For a given value E of
the evaluation function, the corresponding contour is
expressed as

v=-1L (y-M2 (14)
E2
The resulting shape of the contour is parabolic. Several
sample contours are also shown in fig.2.

2A.2.3
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Fig.2 Distribution of Paths and Contours
for Evaluation Function

Following the above development, our purpose can be
restated as finding for a point with the largest evaluation. The
point is expected to be found towards the lower left corner on
the (M, V)-plane.

To systematize this searching process, we first examine
basic relationships between two points, P1 and P2, on the
(M,V)-plane with the following two lemmas. In the following
discussion, a path mi is represented by the point Pi whose
Cartesian coordinate is given by (Mi, Vi), where Mi = M(ri)
and Vi = V(mi).

Lemma 1 : Let w1 and w2 be different paths belonging to
[Ix-opt. Let points P1 and P2 on the (M,V)-plane represent the
paths 71 and w2 respectively. If there is some x = x0> 0 that
satisfies

W) = Wny) for x =X, (15)
then the slope of the line segment P1P2 is negative and its

value is —(1/x0).
Proof : By applying eq.(6) into eq.(15), x0 is calculated

as
- Mi-M 16
X0= Yy Ty, (16)
Therefore the slope of the line segment P1P2 is:
Vi-Va _
=t =<0, .
slope M, My Xo < QED. (17
Lemma 2:If
W) =W, for x =xq, and
Wy > Wxnp) for x >xo, )
then
M;<M; and V>V, (19)
Proof : By applying eq.(15) to eq.(18), we have
M;-M) +x(V1-V9) >0 for x>Xq, (20)
Using the result of lemma 1
__M-M
V1~V2———XO——. 21)
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Substituting the above relation into eq.(20),

- _X
M; =My xO)>0 for x>x0>0. (22)
Thus
M;-M;<0 and Vi-V;>0. QE.D. (23)

We next examine the geometrical distribution of points
Pi's, representing the collection of x-optimal paths, over the
(M,V)-plane. This distribution has an outstanding property
described by the following theorem. Before entering into
details, we should mention some properties that can be
intuitively understood:

1) There exists only a countable number of x-optimal points.
2) Each point presents x-optimality for a certain range of x,

i.e., for xi<x<xi+1. So, supposing that the complete set of

x-optimal paths has been obtained, we can number the

points in the manner that Pi is optimal for xi<x<xi+1,

where i = 1,2,3,...

Theorem 2 : Suppose that the complete set of the x-
optimal points have been obtained and they are numbered in
the manner that a point presenting the optimality with larger
value of x is given a greater number. Connect these Pi's on the
(M,V) plane by straight lines in ascending order and the
resulting shape is convex and monotonically decreasing [see
fig.3].

Proof : Any pair of points from [Tx-op: satisfy eq.(15) for
some x > 0. Thus, following lemma 1, the curve is
monotonically decreasing.

Let Pi, Pj and Px be different points on the (M,V)-plane,
where they are determined to be x-optimal for the value x of
Xi, Xj and xk respectively, and 0 < xi < Xj < Xk.

Let slope(Pi, Pj) and slope(Pj, Pk) denote the slopes of
line segments PiPj and P;Px, respectively. Because these
points correspond to paths in []x-opt, we can always find
some real values a, b for x such that

W@ = W) for x =a,
(24)
W) =Wy for x=b.

For these to be satisfied, a and b must satisfy the relationship:
0<xi<a<xj<b<xk. (25)

From lemma 1, we have

slope(P,P) =~ -, slope(P;Py =~ -, 26)
hence
slope(P;,P)) < slope(P;,Py) < 0. 27

That is, the slope is less steep on the right side of line
connected lines.

This property holds true for any combination of x-optimal
points and hence the shape is convex. Q.E.D.

Using the above results, we now show an algorithm that
locates the optimal point in the (M, V)-plane. Our algorithm
starts with a known set of x-optimal points on the plane. The
main steps carried out in the algorithm consist of:

1) determining regions in which the candidate points are to be
searched for,

Variance

Mean

Fig.3 Distribution of x-optimal Paths

2) determining the region in which the search process is first
applied, and
3) shrinking the search regions based on the newly obtained

X-optimal points.

Assume that x-optimal points Pi, Pj, Px and P1 are known
on the (M, V)-plane, where xi < Xj < xk < x1. We consider the
problem of searching for a new point Pn for xj < x < xk. The
domain where Pn should be searched for is a triangle [see
fig.4] and its location is determined in the following manner.
Two vertices of its triangular domain are trivially found to be
Pj and Px. We define the new vertex Qn as the cross point of
two extended lines, PiPj and PxP1 . The reason for this is
easily understood by considering the fact that if Pn is to exist
for xj < x < xk, PjPnPx the connecting line must be convex as
dictated by theorem 2.

Within this triangle, the candidate points that offer the
highest value in terms of the evaluation function eq.(5) are the
aforementioned three vertices. If the evaluation with the new
point Qn gives a larger value than with the other two points,
the region is worth searching.

For a given set of known points, we can identify as many
triangles as there are line segments. Each newly found vertex
must have a corresponding evaluation. The triangle with the
new vertex which is evaluated to have the largest value, is the
most promising place to search for a new x-optimal point.
This is because, if we can find a new x-optimal point in this
region, the point is expected to yield the largest evaluation
value.

Once we find a new x-optimal point, we can restart the
algorithm with the increased number of known points. In this
case, following the same reasoning as the above, we can
shrink the search domain as shown in fig.5. Note that finding
a single point results in the shrinkage of not only in the
original triangle but also in the two adjacent triangles. As the
cycles of the algorithm repeat, the search domain continues to
shrink until the the point with the highest evaluation, or the
real optimal point, is determined.

For a given triangle A(Pj,Px,Qn), we can find a new x-
optimal point in the following manner. We use

= 1

slope(P;,Py)
to solve for the x-optimal path by applying Dijkstra's
algorithm. Its substantiation is explained in Appendix I. If we

(28)

2A.24
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Fig.5 Search Domain II

can find a new path other than those corresponding to Pj or
Pk, this would be the one with the highest evaluation value.
Otherwise, there are no x-optimal points in this region, and
this region should be excluded from further investigation.

V. FORMAL DESCRIPTION
OF ALGORITHM
In this section, based upon the previous discussion, we
introduce a formal description of our atgorithm. The algorithm
is as follows:

step 1 Given two nodes on G, find initial x-optimal paths
between them with x set to O and infinity. The path finding
processes can be done using Dijkstra's algorithm. Calculate
the corresponding evaluations E(r,Co) by applying eq.(5) and
set Eopt and Eexp to the largest value.

step 2 Determine search domains from a set of known x-
optimal points, and evaluate E(r,Co) for each new vertex Qn.
For the domain A(Pj, Pk,Qn) with the highest evaluation, Eexp
update, and find a new x-optimal path applying Dijkstra's
algorithm with x set to —(1/slope(P;j, Pk)). If there remains no
candidate domain, go to step 4.

step 3 If a new path exists, we plot the corresponding
point Pn on the (M,V)-plane. Calculate E(r,Co) for the new
point Pn and if it is larger than Eopt, update Eopt to this value.
Exclude from the candidate list those domains whose
evaluation values are smaller than Eopt.

Otherwise no new path can be found, and we exclude the
domain from the search domain list.

2A.2.5

In both cases, go back to step 2.

step 4 Terminate the algorithm.

VL WORST CASE ANALYSIS
OF THE ALGORITHMS

To assess the computational complexity of our algorithm,
we evaluate the number of required calculation steps, and
compare it with the brute force search method. In the worst
case, our algorithm must evaluate all x-optimal paths. Using a
complete digraph for comparison, the number of x-optimal
paths, I(n), is upper-bounded by

I(n) s% . (29)

Derivation of the above equation is given in Appendix II.

When a brute force search is applied, all paths between the
given two nodes must be evaluated, where the number of the
paths can be upper-bounded by

n-2
Hm< Y, (“;,2)! .

k=0

(30)

Since I(n) < H(n), the algorithm can be run in less time than
the brute force search. However, unfortunately, the time to
compute the algorithm is proportional to the n-th power of 3
for the worst case and the computation does not terminate in
polynomial time.

The main strength of our algorithm is that we can control
the residual error caused by premature termination of the
algorithm. Let us consider following two probabilities, that
end-to-end delay exceeds the maximum permissible delay;

+oo
PRop: =% L exp(f—x22~) dx, 31)
1 ) <2
PRexp—m IEW exp( D) ) dx, (32)

where Eopt is current optimal value and Eexp is expected
optimum value obtained during the algorithm.

We define the error as the difference of above probabilities,
PRopt — PRexp. The residual error can be calculated as:

error < PRypy — PRexp

1 2
=1 xp(—=2=) dx . 33
V2n fE exp( 2 ) 33

As the algorithm iterates, Eexp is decreased and Eopt is
increased (or remains unchanged). Therefore the error is
decreased with each cycle in the algorithm and so we can stop
the algorithm when error is sufficiently small.

VII. CONCLUSION AND DISCUSSION
We have presented in this paper an efficient algorithm for
solving the stochastic shortest path problems whose
optimization function is given by eq.(3). Let us briefly
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summarize the primary consequences of this paper. First we
introduced the notion of x-weight to make the application of
dynamic programming techniques possible.

Next, we introduced the (M,V)-plane and re-state the
problem in a graphical context, in which the problem is
formulated as the process of searching for a specific point on
the (M, V)-plane. Based on these developments, we proposed
an efficient algorithm to search for the point on the (M,V)-
plane. Finally we evaluated the time complexity of this
algorithm. In this process, we clarified the relationship
between repetition count of the algorithm and the remaining
estimation error.

In general, a packet switched network is modeled as a
directed graph. Since Dijkstra's algorithm is valid not only for
undirected graphs but also for directed graphs, our algorithm
is valid also for directed graphs.

In the worst case, there are a large number of paths,
proportional to 3, in [Ix. However, this would be a rare case.
Thus, generally, we can expect that the algorithm converges
fairly rapidly in practical networks. Ecxp — Eopt is a
monotonically decreasing function of repetition count of the

algorithm and error eq.(33) is also a monotonically decreasing
function of repetition count. Therefore, we can stop the
algorithm taking into consideration various factors, such as the
network size, available processing powers, and so on, while
controlling the remaining estimation error caused by the
immature termination of the algorithm.
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APPENDIX I :
DETERMINATION OF THE VALUE OF x
Suppose the two x-optimal paths, P1 and P2 have been
found for x=x1 and x2, respectively. The x-weight function of
each path P can be represented on the (x,Wx)-plane by a
straight line.
Path P is x-optimal for xi < x < xj if and only if

WiP) < Wy(P') for x;<x<xj, (I-1
where P' represents any other path. Let us assume that the
two lines intersect with each other at x =x3.

If there exists another x-optimal path P3 within xi < x < xj,
the corresponding x-weight function should have the
following property.

WiPy) <Wy(P3) for x =X]-

Wi(P2) <Wy([P3) for x=x3. (1-2)

WiP3) <Wy(P2) and Wy(P3) <W(P1)

for X1 <x;<x <Xj<X3.

That is, the corresponding line should reside within the
shaded region in fig.I-1. It can easily be understood that we
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Fig.I-1 Path Representation on (x, Wx)-Plane

can determine the existence of such a path by calculating an x-
optimal path with x set to x3. The value of x3 is calculated as

_ 1 _
X3= slope(P,P") (-3)

APPENDIX II : DERIVATION OF I(n)

We assign two independent weights on each link in the
graph and use a linear combination of weights on each link
with same coefficient. Then we can take the path that
minimizes the summation of the linear combination of weights
with some coefficient through its path between two given
nodes on the graph. Then we have the following problem.

Problem : If the coefficient is varied, we assume the
number of different paths between two given nodes on the
graph are at most I(n). Search for I(n).

First, we consider following a weighted graph [see fig.II-
1]. We assume that, there are n independent paths from A to B
and m, from B to C. From theorem 2 , there are n+m-1
difference paths from node A to C.

nindependent paths  m independent paths

Fig.1I-1 Example of Network II

Next we consider the nth order complete directed graph
G(n) and name each node 1,2,...,n. We assume I(n) different
paths connect two nodes from n to 1 in G(n). If we add a new
node n+1 and 2n links and form the (n+1)th order complete
directed graph G(n+1), then I(n+1) is represented as follows:

I(n+1) =1+ 2In) - 1) + 2I(n-1) - 1) +
-+ QIQ)-1). (II-1)

The first term of eq.(II-1) corresponds the direct path from
node n+1 to 1. The second term corresponds to the number of
paths via node n using the above result. Similarly, the third
term corresponds to the number of paths via node n-1 and
without node n. Furthermore [(2)=1. Therefore, we can get
eq.(29).
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