NPLA: Network Prefix Level Authentication

Ming Li, Yong Cui, Matti Siekkinen, Antti Ylä-Jääski
Aalto University, Finland
Tsinghua University, China
Structure

- Motivation
- Objective
- Architecture overview
- Implementation
- Overhead
- Conclusion and future work
Motivation

- IP addresses spoofing
- Lack of accountability
- DoS, vulnerability scanning, ...
- Ruin noval applications in practice
- ...

GlobeCom'10 Workshop on FutureNet, Miami, Florida, USA
Objective

- Our Goal
 - Provide packet level authentication on the Internet

- Basic Approach
 - Digital signatures on packets
Objective

- Accountability is the responsibility for one’s actions
 - Link actions to their actors
 - Punish misbehavior
- Packet Authentication
 - Eliminate/mitigate source spoofing based attacks
 - Target for existing Internet not clean slate solution
Architecture overview (NPLA)
Implementation

- How to implement if we intend to for partial deployment in today’s Internet
 - What kind of key
 - Which protocol layer
 - Signature size
 - Crypt. security
 - Key distribution
 - Granularity
- Inject/verify entities
- Interact with legacy entities
 - Host, router, NAT, prefix aggregation...
- Overhead
- Effectiveness

GlobeCom'10 Workshop on FutureNet, Miami, Florida, USA
Requirements -> Implementation

- Strong identifier/on route entities could verify the packets -> key type
 - Asymmetric key
- Compatibility -> protocol layer
 - Shim layer between IP and TCP
Requirements->Implementation...

- Key distribution
 - Public key infrastructure (PKI)
 - Routing protocols (BGP)
 - Offline

- Signature size and security
 - ECC public key cryptography algorithm
 - Security: 163-bit ECC key = 1024-bit RSA key
Requirements->Implementation...

- Security level/key management overhead ->
 authentication granularity
 - Host/personal level
 - Network prefix level (intra-domain)
 - AS level (inter-domain)

- Signature injection and verification entities
 - Prefix border router
 - AS border router
Requirements -> Implementation

- Partial/incremental deployment, interact with legacy entities
 - Legacy host (strip off before arriving)
 - Router (compatible)
 - NAT (update)
 - Prefix aggregation (known to the administrator)
 - Incentive deployment
 - IP fragmentation

GlobeCom'10 Workshop on FutureNet, Miami, Florida, USA
Overhead and performance

- The overhead must be affordable
- Computation overhead (FPGA crypt hardware)
 - Generate 645K/s and verify 283K/s signatures
 - Generate 3.8G/s and 1.7G/s traffic
- Traffic overhead (%6-10%)
- Memory overhead
 - 13MB for prefix level authentication
Overhead and Performance

- Delay
 - ~16us per generation
 - ~24us per verification
Conclusion and Future Work

- Authenticate packets to its claimed network prefix
- Implementation challenges
 - How to make it work in practice?
- Future work
 - Implementation in real networks

GlobeCom'10 Workshop on FutureNet, Miami, Florida, USA