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Abstract—Information networks are an important social 

infrastructure, and we should ensure their stable and sustainable 

operation. Since retry traffic greatly impacts network stability, 

we should, in particular, consider retry traffic when designing 

and controlling communication network systems. We 

previously proposed a hierarchical method that uses the quasi-

static approach to evaluate system performance in the presence 

of retry traffic. This approach is based on the fact that system 

response times are much shorter than the users’ perceivable 

time-scales. For the sake of simplicity, previous work 

considered a specific model that assumed that all users’ 

behaviors were synchronized with respect to a certain time 

interval even though users behave independently. This paper 

introduces a performance evaluation method, based on the 

framework of the quasi-static approach, for networks in which 

retry traffic is generated by users autonomously. 
 
Index Terms—Retry traffic, IP telephony, system stability, 

quasi-static approach 

 

I. INTRODUCTION 

Signaling systems play a crucial role in supporting all 

virtual channel (VC) communication services, including 

IP telephony and conventional telephone networks. The 

congestion in the current Internet is caused by 

overloading of not only the communications links but 

also the processing resources in the signaling systems. 

Recently, problems with commercial IP telephony 

systems have been reported in Japan. One of the key 

causes of such problems is overloading of the signaling 

functions provided by the call-processing system. In 

particular, the retry traffic generated by users has a 

serious negative impact on system stability. Here, retry 

means multiple user attempts to set up a connection. 

In general, retries are generated by two different 

factors as described below.  

 Retry traffic generated due to a shortage of link 

bandwidth.  

This shortage (e.g., resource for VCs) triggers rejection 

of requests for connection setup or for bandwidth 
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reservation. If a request is rejected, the corresponding 

user might generate retry traffic. 

 Retry traffic generated due to a shortage of call-

processing resources.  

A shortage of processing resources causes the response 

time of the call-processing system to increase. 

Psychological factors will induce impatient users to retry 

their requests. Because prior requests are not cancelled, 

one user can create duplicate requests. 

A variety of queuing models with retry traffic have 

been well studied [1], [2]. Conventionally, the 

relationship between the link bandwidth and the input 

rate of call setup requests has been investigated using the 

M/G/s/s model. Let us consider the M/G/s/s based retry 

model called the multi-server model in [1]. The 

expression M/G/s/s represents a model in which service 

(call-setup) requests arise in a Poisson manner, enter the 

system, receive service from one of s servers, and then 

leave the system, and in which service requests are 

discarded if all s servers are busy. An M/G/s/s retrial 

queue model represents an M/G/s/s model in which 

discarded service requests are stored in a retry queue and 

re-enter the system after a certain elapsed time 

determined by an exponential distribution. This model is 

stable if the length of the retry queue does not diverge 

[2]; its stability condition is known to be 

                                 
(1) 

where λ0 is the arrival rate of primary service requests, 

excluding retry requests, per unit time, and 1/η is the 

average service time. The above model incorporates retry 

traffic that arises due to a resource shortage in the link 

bandwidth, but it does not consider retry traffic that arises 

due to resource shortages in the call-processing system. 

However, such traffic is expected to serious impact 

system stability. This is because that the prior requests 

are not cancelled when impatient users generate retry 

traffic, duplicate requests will exist in the system. In this 

paper, we focus on a call-processing system that is 

configured using a VC-based communication service 

model (e.g., IP telephony), and consider the stability of 

the system under the impact of retries. We consider how 

to evaluate the probability that the system will become 

unstable. 

Our previous research focused on an IP telephony 

system, and discussed the properties of retry traffic 
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caused by resource shortages in the link bandwidth and/or 

the call-processing system [3]–[6]. To understand the 

dynamics of retries, we should understand the 

interactions of the users and the system. A fundamental 

approach for describing interactions is the decomposition 

of timescales. However, the decomposition models in 

earlier papers were primitive. In [3], we introduced the 

quasi-static approach to describe fluctuations in traffic. 

This approach assumes that state transitions of the system 

occur on a timescale significantly (infinitesimally) shorter 

than the timescale of human perception. This means that 

the system might as well be working at infinite speed. 

This assumption cannot take account of fluctuations in 

traffic. In [4]–[6], it is assumed that all users’ behaviors 

are synchronized with respect to a certain time interval, 

but this assumption is unrealistic. 

This paper focuses on retry traffic caused by resource 

shortages in the call-processing system and introduces a 

retry traffic model in which users’ behaviors are mutually 

independent. That is, we develop a new realistic model of 

retry traffic, and clarify that system stability can be 

evaluated by using the conventional quasi-static approach. 

First, we briefly explain time scale decomposition for 

describing the retry traffic in Sec. II. Next, we show the 

conventional quasi-static approach as the conventional 

retry traffic model and its issues, in Sec. III. Then, we 

introduce a new retry traffic model that can describe 

users’ behaviors properly as an extension of the quasi- 

static approach in Sec. IV. The validity of the proposed 

model is verified through an evaluation of system 

stability in Sec. V. Finally, we conclude our discussion in 

Sec. VI. 

 
Fig. 1. System model 

II. TIME SCALE DECOMPOSITION FOR DESCRIBING 

RETRY TRAFFIC 

This section describes time scale decomposition that 

can describe a retry traffic model that can take account of 

resource shortages in call-processing systems. The 

decomposition gives a foundation to the quasi-static 

approach shown in the next section. The significant fea- 

tures of the decomposition include macroscopic system 

behavior on a human perceptible timescale.  

The call-processing system model should describe the 

system behavior related to call setup at a server, and for 

this we use the M/M/1-based model. The M/M/1-based 

model is a combination of a simple M/M/1 model and a 

retry traffic model that includes resource shortages in the 

call-processing system, with retry traffic generated by 

impatient users (Fig. 1). That is, some of the users who 

have been kept waiting for execution of call setup request 

a new call setup. Such retry traffic will be generated 

without canceling the existing call setup requests.  

Let us consider how retry traffic arises. It is natural to 

assume that the intensity of retry traffic depends on the 

length of the queue in the M/M/1 model. It is logical to 

consider that retry traffic dependent on the number of 

queued contents in the call-processing system. If we 

assume that each call setup request waiting in the call- 

processing system generates retry traffic at a certain rate ε, 

then a diagram depicting the state transition rate with 

respect to the number of requests in the M/M/1 model 

will be like that shown in Fig. 2. In this figure, λ0 is the 

primary arrival rate of call setup requests, excluding retry 

traffic, per unit time, while 1/μ is the average service time 

of the call-processing system. For this system to have a 

steady-state probability, the infinite sum on the right-

hand side of the following equation must exist. 

 

Therefore, if ε > 0, the system is unstable. Since an 

increase in retry traffic does not result in the divergence 

of the waiting time of an actual call-processing system 

under normal operating conditions, we can conclude that 

a model in which retry traffic is generated in proportion 

to the number of call setup requests in the call-processing 

system is not realistic.  

 
Fig. 2. State transition diagram for the case where retry traffic is 
generated in proportion to the current number of call setup requests in 

the call-processing system 

Let us identify what is inappropriate in the above 

model. In general, state transitions of the call-processing 

system occur on a timescale much shorter than humans 

can perceive. It is natural to assume that the intensity of 

the retry traffic is not proportional to the number of call 

setup requests in M/M/1 at the present time, but 

proportional to the average number of call setup requests 

in M/M/1 on a longer timescale. The timescale should be 

long enough for humans to perceive. Let T be the 

minimum timescale perceptible to humans. We assume 

that the call-processing system is in a steady state on a 

timescale smaller than T, and that retry traffic affects the 

system on a timescale larger than T. In the following, we 

summarize the assumptions of such a quasi-static state for 

the generation of retry traffic.  

 The system can be assumed to be in a steady state on 

a timescale smaller than T.  

 Changes in the system are observed at discrete times 

occurring at an interval of T.  

 Retry traffic generated from users at a certain discrete 

time, t = k, is determined by the steady-state 

probability of the system at t = k − 1. 
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Note that the condition that the steady state is achieved 

on a finite timescale T implies that transitions of the 

system occur on a timescale much (infinitesimally) 

shorter than the human perceptible timescale.  

In other words, the system works at essentially infinite 

speed. 

The value of T must satisfy the following 

requirements: 

 T must be a timescale on which humans can actually 

perceive an increase in the waiting time for their call 

requests.  

 T must be sufficiently longer than the timescale for 

which it is possible to assume that the system is in a 

steady state on a timescale smaller than T. 

It is well known that the tolerable waiting time to 

display a website is about 8 seconds; a longer wait 

exceeds the typical user’s patience Many webpages are 

designed so as to satisfy this so-called 8-second rule [7]. 

Measurements of waiting time have verified that a user’s 

interest fades after 10 seconds or so [8]. In our case, 

however, the tolerable waiting time must be smaller than 

that for webpages. Reference [9] classifies the key time 

intervals according to human perception as follows:  

 Delay of 0.1 second is perceived as instantaneous 

access. 

 Delay of 1.0 second is the limit for a user’s thought 

flow to remain uninterrupted. 

 Delay of 10 seconds is the limit for keeping a user’s 

attention/focus on the dialogue. 

The last category coincides fairly well with the 8-

second rule for websites in terms of both the duration and 

the explanation. Since the generation of retry traffic 

seems to correspond to the second category, one second 

is a reasonable value for T.  

Changes in the state of the system are examined at 

discrete intervals T. The retry traffic at time t = k is 

determined by the steady-state probability of the system 

at time t = k −1 (see Fig. 3).  

 
Fig. 3. Temporal evolution of the input rate in discrete interval model. 

Let λk be the input rate, including retry traffic, at time 

k. We assume that the input rate at time k + 1 is 

               

(2) 

where 1/μ is the average service time of the call- 

processing server, and ε is a positive constant indicating 

the intensity of the retry traffic generated due to a call- 

processing resource shortage. 

Next, let us consider the stability of the system. We 

assume that the requirement for the system to be stable is 

that traffic, including retry traffic, does not diverge after 

sufficient elapsed time. Namely,  

 
(3) 

This can be verified by defining the functions of λ, f(λ) 

and g(λ) as follows, and determining if they intersect. 

 
(4) 

 (5) 

Since λ0 > 0, f(0) > g(0). The relationship between f(λ) 

and g(λ) in some typical cases is shown in Fig. 4. If the 

input traffic at a certain time is λ, the input traffic at the 

next time instant becomes {g
-1

 ◦ f }(λ), followed by { g
-1

 ◦ 

f }
2
 (λ), etc. In general, the input traffic after the passage 

of n unit times becomes { g
-1

 ◦ f }
k
 (λ). As shown in the 

left chart in Fig. 4, if f(λ) and g(λ) do not intersect, {g
-1 

◦ 

f}
k
(λ) →  ∞  (k→∞ ). If, on the other hand, the two 

intersect in the manner shown in the right chart of Fig. 4, 

then the system is stable for all λ to the left of the right-

most intersection. 

 
Fig. 4. System stability possible if f(λ) and g(λ) intersect. 

III. QUASI-STATIC APPROACH: CONCEPT AND ISSUES 

In the previous sections, we assumed that a steady state 

was achieved on finite timescale T. This implied that the 

system works at an infinitely high speed. However, since 

real systems have finite speeds, the steady state is never 

achieved in a finite time interval. In addition, 

synchronization of users’ behaviors with respect to 

interval T, shown in Fig. 3, is unrealistic. The quasi-static 

approach tries to avoid these problems. 

A. Concept of Quasi-Static Approach 

In this subsection, we briefly explain the concept of the 

quasi-static approach. Let us consider how to examine 

system stability to input traffic under the condition that 

the system works at a finite speed. First, we clarify 

certain problems in the traditional approaches to 

examining stability. Then, we clarify the concept of the 

quasi-static approach can avoid the problems.  
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Let n be the number of call setup requests arising in 

interval T. If retry traffic from the call-processing system 

is proportional to the average number of call requests 

waiting in M/M/1 at time k (in interval T), the second 

term on the right-hand side of (2) is replaced with 

 

(6) 

where  denotes the number of call requests waiting in 

the M/M/1 system immediately before the i-th request 

arrives. If the system works at infinite speed, that is, n → 

∞, we have 

 

(7) 

Fig. 5 shows the appropriate approaches with respect 

to the system speed. The horizontal axis plots the system 

speed from slow to infinitely high. Let us consider the 

case where the system works at a very low speed, for 

example n = 1. This case corresponds to the situation in 

which a human can detect the systems present state, 

meaning that the human’s perception is exceptionally 

sensitive or the system speed is very slow. In this case, 

the next value of input traffic depends only on the latest 

value of . That is, the system can be described by the 

Markov model of Fig. 2, which corresponds to slow in 

Fig. 5. 

 
Fig. 5. Concept of quasi-static approach. 

In general, if n > 1, we can use a Markov model with 

an n-dimensional state space that is constructed by the 

past n states { Q1
k
, Q2

k
, ..., Qn

k
 }. That is, it corresponds 

to medium in Fig. 5. However, if the system works at 

high speed, n ≫ 1, the state space explodes and becomes 

intractable.  

Next, we consider the applicability of simulation 

techniques. If we require the probability of the system be- 

coming unstable, for example, to be less than 10
-6

 in the 

long-term operation of an IP telephony system, more than 

10
6
 (usually 10

8
 to 10

9
) runs of the corresponding long-

term simulation are required. Such large-scale 

simulations are not realistic.  

The quasi-static approach proceeds follows. In order to 

analyze the stability of the high (but finite) speed system, 

the quasi-static approach first examines the sys- tem 

behavior at infinite speed, and considers the gap between 

that behavior and the system behavior at finite speed as 

fluctuations (see Fig. 5). In other words, the change factor 

in the state of the system is decomposed into two parts, 

one being the deterministic change factor which is 

described by system behavior at infinite system speed and 

the other factors being described as stochastic 

fluctuations. This approach is effective for a model with a 

scale that cannot be realistically handled by both the 

Markov model and the simulation technique.  

B. Conventional Quasi-Static Approach 

We define input rate Λ(t;T) at time t as 

 (8) 

where <QT>t is a kind of the average number of call 

requests in the call-processing M/M/1 system during 

interval [t − T, t] and ε is a positive constant. This is an 

extension of (2) written using continuous time t. The 

input rate Λ(t;T) is given by the sum of the rate λ0 for 

primary traffic and the rate for retry traffic, which is 

proportional to the average number of call requests. 

In the conventional quasi-static approach, <QT>t is 

defined as the average during interval T immediately 

before the present time t, that is,  

 

(9) 

where Q(t) is the number of call requests in the system at 

time t. This model makes the rate of retry traffic rate at 

time t proportional to the average number of call-setup 

requests in [t −  T , t]. If users were able to react to the 

variation of the system state immediately, T → 0 then 

              (10) 

This corresponds to the system model described by the 

state transition diagram shown in Fig. 2.  

As a preliminary for describing the quasi-static 

approach, we show the Langevin equation and the 

Fokker- Planck equation [10]. Let X(t) be a random 

variable. Let us investigate the temporal evolution of X(t) 

as follows. We assume that the temporal evolution of X(t) 

is given by 

 (11) 

where g1(X) and g2(X) are functions of X(t), and W(t) is 

the Wiener process. The first and second terms on the 

right-hand side of (11) are deterministic and stochastic 

parts of the temporal evolution, respectively. 

Equivalently, this equation can be written in the 

following form  

 (12)
 

where ξ(t) is Gaussian white noise such that E[ξ(t)] = 0 
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and E [ξ(t)ξ(t’)] = δ(t –  t’). This equation is called the 

Langevin equation. Let the probability density function of 

X (t) be p(x, t). Then, the temporal evolution function of 

p(x, t) is given by the following Fokker-Planck equation,  

 
(13) 

The first and second terms of (13) are called the drift 

term and the diffusion term, respectively. The drift term 

describes the deterministic motion of p(x,t) and the 

diffusion term describes the fluctuation around the drift 

motion. The values of g1(X) and g2(X) govern the 

strength of drift and diffusion motions, and they denotes 

variation of the mean value and its standard deviation, 

respectively. These mechanisms are easily recognized 

through the following explanation. Let us introduce 

potential function U(x) of the drift motion as 

 
(14) 

Fig. 6 shows an example of the potential function. The 

drift motion occurs toward the direction that the value of 

the potential decreases. The minimum point and the wall 

of the potential correspond to the left and right 

intersections in the right panel of Fig. 4, respectively. In 

addition to the drift motion described as Fig. 6, the quasi-

static approach can describe some fluctuations by the 

diffusion term.  

 
Fig. 6. Example of potential function and the corresponding drift motion. 

Next, we consider the temporal evolution of retry 

traffic by the quasi-static approach. We define the actual 

number of customers arriving during [t −  T, t] as X(t,T). 

Under the limit of higher system speed, lim T→∞ X(t,T)/T = 

Λ(t;T) a.s. In general, X(t,T) is not stationary but the 

variation occurs very slowly. Here, we define the 

infinitesimal variation of X(t,T) as 

 
(15) 

 
Fig. 7. Variation of input rate 

This is composed of the difference between increment 

X(t+dt, dt) and decrement X(t− T, dt) (see Fig. 7). 

Here, since the input traffic follows a Poisson process, 

the variance of the input traffic is equal to the input rate. 

In addition, since we consider large-scale systems many 

call requests, the Poisson distribution can be approxi-

mated by a Gauss distribution with no correlation. 

Therefore, by the quasi-static approach, the number of 

arriving customers can be expressed as 

 

(16) 

 

(17) 

In the form of Langevin equation, we have 

 

(18) 

This equation has been verified by comparison against 

simulation results in a certain situation that all the users 

are synchronized as described in Fig. 3 [6]. The temporal 

evolution equation (18) has been improved from the 

deterministic model (2) in following two ways.  

 (18) is stochastic model and it takes fluctuations into 

consideration. 

 The time parameter is improved from discrete 

variable k to continuous variable t. 

However, synchronization of users’ behaviors is not 

completely avoided. The users’ behaviors in the time 

interval of T affect only the next time interval. It is 

natural that the behavior of individual users should be 

independent of the specific periodic timing of T 

introduced by us. To avoid this problem, we introduce an 

extension of the conventional quasi-static approach in the 

next section. 

IV. EXTENSION OF QUASI-STATIC APPROACH 

A. Randomness of Retry Users 

In order to avoid the fact that an individual user 

depends on a specific periodic interval of T, we assume 

that the call-setup requests (customers) waiting for 

service by a M/M/1 call-processing system generate retry 

traffic after randomized intervals. Since we assume the 

input traffic obeys a Poisson process, the randomized 

interval follows an exponential distribution. 

Each customer in the system at an arbitrary point of 

time retries the request at a constant rate ε per unit time. 

The randomized time interval, which is from the arbitrary 
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chosen time point to the time of the corresponding retry 

traffic arrival, obeys an exponential distribution with 

mean of T. Fig. 8 illustrates the above retry traffic model. 

Let Q(s) be the number of customers in the system at time 

s. The contribution to the input rate of retry traffic at 

current time t (s < t) from Q(s) at the point of the past s is 

(εQ(s)/T)exp((t− s)/T)dt. Then input rate at time t is 

expressed as 

 

(19) 

This is an example of (8) and an extension of (9) [11]. 

The second term on the right hand side of (19) denotes 

retry traffic rate. This is the exponentially weighted 

moving average of the number of customers of the past. 

Figure 9 shows examples of the temporal evolution of 

customers and the weight. The quantity of this weights 

decays exponentially by time constant T. Similar to (10), 

if users were able to react to variation of the system state 

immediately, T → 0 then 

 
(20) 

This means the new model (19) is also an extension of 

the Markov model described in Fig. 2.  

 
Fig. 8. Relationship between the number of requests Q(s) at s and the 
retry at t caused by Q(s) 

 
Fig. 9. Weighted average. 

B. Temporal Evolution Equation for the Extended 

Quasi-Static Approach 

The extended input traffic model (19) derived in the 

previous subsection fundamentally differs from the 

conventional model (9). In the extended model of (19), 

individual users autonomously generate retry traffic 

where generation is independent of any specific interval, 

T. In this subsection, we consider the temporal evolution 

equation of the input traffic based on the extended model 

(19).  

In order to measure the rate of input traffic actually 

generated, we need to count the input traffic generated 

during a certain time interval and derive the number of 

input traffic per unit time. That is, it is impossible to 

know the input traffic rate of (19) by measurement at any 

one moment. Let X(t,T) be the number of actual input 

traffic generated in time period [t −  T, t] whose length is 

T. If T →  ∞ , the observed input traffic rate X(t)/T 

approaches the theoretical value,  

 
(21) 

However, as seen in Fig. 5, (21) is not correct for a 

finite T and we should additionally consider fluctuations. 

The infinitesimal variation of X(t,T) is expressed as 

 

(22) 

After the infinitesimal time dt has elapsed, X is 

increased by A(t;dt) and is decreased by D(t;dt). Because 

tran- sitions in system state are attributed to user behavior, 

stochastic process X varies slowly at rate T. In addition, 

since we consider large-scale system (λ0≫1) and there 

are a lot of call requests, the input Poisson process can be 

approximated by a Gauss distribution with no correlation. 

Therefore, the infinitesimal variations A and D are 

expressed as 

 

(23) 

 
(24) 

Thus, we can obtain 

 

(25) 

In the form of Langevin equation, (25) is expressed as 

 

(26) 

and the result, in the form of the Fokker-Planck equation, 

is 

 

(27) 
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The above results are the same as that of the conventional 

quasi-static approach (18).  

Note that these input models are very different 

although their forms of temporal evolution are the same. 

The reason why we get the same equations is that the 

procedure of measuring the input rate is the same as the 

procedure of moving average of the input rate. 

Fortunately, we can use the same temporal evolution 

equation even though the input traffic model becomes 

complex.  

V. SIMULATION RESULTS 

This subsection verifies the validity of (26) and (27) by 

comparison with Monte Carlo simulation. In this 

simulation model, each user generates retry traffic 

independently of the specific periodic interval of T. This 

is a major difference from the evaluation of the 

conventional quasi- static approach shown in [6]. 

Fig. 10 shows the potential function with parameters of 

λ0 = 800, μ = 1000, ε = 0.5, T= 1.0. The horizontal axis 

denotes X(t,T) and vertical axis denotes the potential 

function U(X). As the initial condition, the p(x,0) is a δ-

function at the minimal point of the potential function. 

The wall of the potential function is an absorption state 

(i.e., once it reaches there, it can never re- turn). Fig. 11 

and Fig. 12 show the cumulative distribution function of 

X(t, T) at t = 1 and t = 50, respectively. We can recognize 

that the quasi-static approach can properly describe the 

behavior of input traffic.  

 
Fig. 10. Potential function. 

 
Fig. 11. Distribution of the input traffic at t = 1.0 

Next, we investigate the situation in which the initial 

condition is not at the minimum point. As the initial 

condition, we set the delta-function to a position shifted 

from the minimum point of the potential function. The 

parameters are as follows: λ0 = 500, μ = 1000, ε = 1.0, T 

= 1.0. Fig. 10 shows the potential function corre-

sponding to the above condition. The minimal point of 

the potential function exists at X ≃ 500. We set the initial 

distribution p(x,0) as the δ-function at X = 600. Figures 

14 and 15 show the cumulative distribution function of 

X(t,T) at t = 1 and t = 5, respectively. We can recognize 

that the quasi-static approach can properly describe the 

change of the distribution. Through the above 

experiments, we can confirm that the quasi-static 

approach can describe the behavior of the system 

deviated from the stable point by perturbation. 

 
Fig. 12. Distribution of the input traffic at t = 50.0 

 
Fig. 13. Potential function 

 
Fig. 14. Distribution of the input traffic at t =1.0 

 
Fig. 15. Distribution of the input traffic at t =5.0 

VI.
 
CONCLUSIONS
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In this paper, we have shown how to properly account 

for retry traffic generated by interaction between users 

and networks. To model the interaction properly, our 

approach describes the retry traffic randomly generated 

by individual users. The model can characterize the 

natural behavior of users unlike the conventional model 

which uses a specific periodic interval.  

Fortunately, although our proposed model is more 

complex than the conventional model, the temporal 

evolution equation of the input traffic can be written in 

the same form. Therefore, our proposed model does not 

need to introduce additional complex procedures. 

Experiments support the fact that our proposed model 

properly de- scribes the behavior of retry traffic. 

This paper focused on retry traffic generated by in- 

adequate resources in the call-processing system. Since 

retry probably significantly impacts various communica- 

tion services, we need to investigate retry traffic models 

for the various services. In these processes, we expect 

that the concept of time scale decomposition and the 

quasi- static approach will prove to be useful tools. 
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