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Abstract—We previously proposed a framework for au-
tonomous decentralized control by introducing a partial differ-
ential equation based on local-action theory. Although each node
in the network acts autonomously on the basis of only the local
information directly available to it, our control proposal leads to
optimal performance for the whole network. In addition, we have
proposed flow control based on a diffusion equation to achieve
autonomous load-balancing in the network and have confirmed
that realizes congestion avoidance. This paper introduces a new
autonomous decentralized control scheme that creates the spatial
structures of finite size by using renormalization transformation
and back diffusion drift. Moreover, we use the proposed control
scheme to realize autonomous decentralized clustering in ad hoc
networks.

I. INTRODUCTION
Mobile ad hoc network (MANET) [1] has attracted a great

deal as a likely network configuration technology with which
to realize the long-desired ubiquitous networking. MANET
has no communication infrastructure and is a self-configuring
network of mobile systems connected by wireless links. It can,
therefore, offer a flexible communication environment that is
robust against disasters and changes in event sites. For ad
hoc network control, many techniques have been introduced,
especially with regard to route selection. The representative
flat-type routing technologies in MANET are classified as
either proactive schemes [3], [4] or reactive schemes [5],
[6]. Both are effective if the MANET does not have many
mobile systems. As the network size grows, however, these
protocols have the problem that the size of the routing table
stored at each individual node becomes large. As a result, the
flooding overhead of route requests increases network load.
Against this problem, a large number of studies have looked
at clustering [7], [8], [9]. In clustering, mobile nodes are
divided into different virtual groups (clusters) and routing is
based on intra-cluster and inter-cluster calculations. Cluster-
head candidate selection is one of the important problems in
clustering schemes, and [10], [11] have proposed algorithms to
select cluster-heads appropriately in accordance with network
conditions.

The common basic framework demanded in those algo-
rithms is adaptability to network environments, and it is hoped
to have the following flexibility: when there is no cluster-
head candidate in the neighborhood, the mobile node itself
stands as a candidate and becomes a cluster head. On the other
hand, when there are two or more cluster-head candidates,
we need a highly effective and efficient metric that can
realize optimal cluster-head selection. Examples of the metrics
possible include node degree, cluster size, mobility speed, and
battery energy [12]. In general, the cluster-head must have full
information about the state of other nodes or of the overall
network to optimize the cluster structure. Unfortunately, it is
difficult to collect global information about the network given
the network structure and the need to minimize the information
exchange frequency over the MANET. Therefore, a MANET
needs an autonomous decentralized clustering mechanism in
which each node acts autonomously on the basis of just local
information they are aware of, while the decisions made by
each node optimize the state of the whole network.
In this paper, we introduce an autonomous decentralized

clustering method that allows the nodes to act based only on
the information they are aware of while realizing environmen-
tal adaptability and overall network optimization.

II. AUTONOMOUS DECENTRALIZED CONTROL
MECHANISM BASED ON LOCAL INTERACTION

This section describes the framework of the autonomous de-
centralized control mechanism based on local interaction [13].
When thinking about the interaction of two objects that are
separated in space, there are two theories depending on the
action method; “action at a distance (non-local interaction)”
and “action through a medium (local interaction)”. “Non-local
interaction” is the direct interaction of two objects that are not
linked by any field or medium. For example, Newton’s law of
universal gravitation is an example of “non-local interaction”;
the force of gravity created between object A and object B, F ,
is directly proportional to mass m1 and m2 of the interacting
objects, and inversely proportional to the square of the distance



Fig. 1. Example of local interaction.

|r1 − r2| between the objects as follows:

F (r1, r2) = G
m1 m2

|r1 − r2|2
,

where G is the gravitational constant. Function F (r1, r2) is
decided by the distance, that is to say that it is necessary to
know the value of the distance, in other word, the positions
of objects A and B. From the viewpoint of network control,
this is the same as the requirement established by centralized
control that all global information about the network state must
be collected.
In the case of “local interaction,” on the other hand, any

variation in the physical value at a point of space is transmitted
to the adjacent point via the medium of the gravitational field
at a limited speed. A temporal variation in such a gravitational
field can be described by using a partial differential equation.
We use the following example to elucidate “local interaction.”
: When we let a few drops of black ink fall into a glass tube
filled with water, the ink density distribution follows a normal
distribution and the ink spreads through the whole tube by
diffusion (Fig. 1). In this process, the action within a minute
region of water in the glass tube is very simple: the ink diffuses
from the higher density side towards the lower density side.
The rate of ink diffusion is proportional to the density gradient.
Even though each segment acts autonomously and only local
information is available, the ink density distribution throughout
the glass tube exhibits orderly behavior.
Let the density function (density distribution) of “a certain

quantity” at time t in space be p(x, t). In the diffusion
phenomenon, flow J(x, t) of “a certain quantity” in space is
expressed as,

J(x, t) = −κ
∂p(x, t)

∂x
, (1)

where κ, which is a positive constant, (> 0). This equation
means that “a certain quantity” flows at a rate which is
proportional to the gradient of the density. When the total
amount of “a certain quantity” in the system is unchanged,
the continuous equation,

∂p(x, t)
∂t

= −∂J(x, t)
∂x

(2)

holds.
We substitute Eq. (2) for Eq. (1) and get the temporal

evolution equation of the density distribution,

∂p(x, t)
∂t

= κ
∂2p(x, t)

∂x2
, (3)

where this is the ordinary diffusion equation. In this equa-
tion, when the density distribution is a delta function as
the initial condition, the density becomes uniform over time.
Since Eq. (3) is a linear differential, we can obtain general
solutions by superposing the normal distribution under even
more complex initial conditions. As seen in an example of
the diffusion phenomenon, we can consider a system that is
based on local interaction as the framework of the autonomous
decentralized control from the viewpoint of engineering. In
other words, while the sub-systems autonomously run using
only local information, the state of the whole system is opti-
mized indirectly through the corresponding temporal evolution
equation. Variants of the autonomous decentralized control
based on such local interaction can be summarized as follows:

• Think about the macro characteristic that the state of the
whole system should have, and find the partial differential
equation (corresponding to Eq. (3)) whose solution has such
a characteristic.

• Think about local interaction (corresponding to Eq. (1)) that
the partial differential equation describes, and design sub-
systems so that they act according to the rule that is obtained
from the local interaction.

• As a result, while sub-systems act only based on local
information autonomously, they push the whole system into
the preferable state as a solution of the partial differential
equation.

In general, in autonomous decentralized systems whose sub-
systems independently perform local interaction, the whole
system might fall into system-deadlock if the sub-systems
are not designed properly. The framework of autonomous
decentralized control based on local interaction avoids this
problem and gives us a hint as to how to properly design local
actions of sub-systems so that the whole system is pushed into
the desired state.
As an example of autonomous decentralized control based

on local interaction, we previously proposed a diffusion-type
flow control (DFC) mechanism [14], [15] that overcomes the
difficulty of controlling high-speed networks. In this control
mechanism, the state of the whole network is controlled indi-
rectly through the autonomous action of each node; each node
manages its local traffic flow on the basis of only the local
information directly available to it, by using predetermined
rules. By applying DFC, the distribution of the total number
of packets in each node in the network becomes uniform over
time, and it exhibits orderly behavior. This property is suitable
for fast recovery from congestion. In Fig. 2, we show the
temporal evolution of the number of packets stored in each
node. The target flow is between node 1 and node 30, while
the background traffic flows between node 15 and node 30.
The target flow and the background flow start at simulation
time t = 0 s and t = 0.1 s, respectively. The horizontal axes
denote node ID (1–29) and the vertical axes denote the number
of packets stored at the node. In the case with TCP without
DFC, after the start of the background traffic flow (0.1 s),
all the stored packets were at node 15, resulting in packet



Fig. 2. Diffusion effect of DFC

loss. After that, the TCP window size was reduced and the
number of stored packets decreased. In the case of TCP with
DFC, the latter prevents the stored packets from building up
at a particular node. Since packet loss was avoided, the TCP
window size did not reduce and high network efficiency was
achieved. Through the introduction of DFC, each node acts
cooperatively to avoid packet loss even though the decision-
making of each node is based only on local information.

III. RENORMALIZATION TRANSFORMATION OF THE
DIFFUSION PHENOMENON FOR AUTONOMOUS

DECENTRALIZED CONTROL

So far, we have referred to the diffusion effect in describing
autonomous decentralized control based on local interaction.
We turn now to a structure of practical size that offers
autonomous decentralized control for patterns other than the
diffusion effect.
When we calculate the temporal evolution of density distri-

bution p(x, t) which is the solution of Eq. (3), while dithering
the x axis simultaneously within the ratio of

√
2κt/σ, we get

density distribution q(x, t) as follows:

q(x, t) :=
√

2κt

σ
p

√√
2κt

σ
x, t

!

, (4)

where σ is a positive constant. Carrying out both the temporal
evolution (diffusion) and the scale-variation (dithering) at the
same time can be regarded as a kind of renormalization
transformation of the density distribution p(x, t). The density
distribution q(x, t) for which we execute the renormalization
transformation follows

∂

∂t
q(x, t) =

1
2t

µ
∂

∂x
x + σ2 ∂2

∂x2

∂
q(x, t). (5)

This differential equation satisfies the following equation:

lim
t→∞

q(x, t) =
1√

2πσ2
e−

x2

2σ2 . (6)

For the normal diffusion equation (3), the above equation
means that the solution approaches a normal distribution
asymptotically with time regardless of the initial condition.
By use of this mechanism, we can realize a new autonomous
decentralized control approach that operates within a limited
structure. However, using Eq. (5) instead of expression Eq. (3)

raises two problems with regard to autonomous decentralized
control.
• The existence of 1/(2t) on the right hand side of Eq. (5)
makes, over time, the change in the distribution small.

• It is necessary to set the coordinate systems in the network
because the drift term for Eq. (5) directly depends on x.

We consider the latter problem in a following section.
Let us then discuss the transformation of the time-scale.

The distribution q(x, t) in Eq. (5) should have a fast temporal
evolution so that 1/(2t) on the right hand side of Eq. (5) can
be eliminated.
If a constant, c > 0, is used instead of 1/(2t) in Eq. (5),

we get:

∂

∂t
q(x, t) = c

µ
∂

∂x
x + σ2 ∂2

∂x2

∂
q(x, t), (7)

where we construct the renormalization transformation

q(x, t) :=
√

2κe2ct

σ
p

√√
2κe2ct

σ
x, e2ct

!

. (8)

Here, for the reason that time merely passes fast in Eq. (8),
the limiting distribution (6) is invariable under the redefinition
of renormalization transformation.
It is necessary to specify the flow corresponding to Jq(x, t)

of the continuous equation,

∂

∂t
q(x, t) = − ∂

∂x
Jq(x, t),

if we are to associate Eq. (7) with autonomous decentralized
control. Jq(x, t), which satisfies this equation, is expressed as

Jq(x, t) = −c x q(x, t)− cσ2 ∂

∂x
q(x, t), (9)

where c denotes the rate of temporal evolution of the den-
sity distribution and σ2 denotes the variance of the normal
distribution that is converged on. By the way, the temporal
evolution equation Eq.(8) obtained by the renormalization
transformation is an example of the Ornstein-Uhlenbeck pro-
cess [16]. For the reason given above, if we make the local
action of each node follow Eq. (9), the limiting distribution
is expressed as Eq. (6), regardless of the configuration of the
initial distribution.
The next section describes a method for designing au-

tonomous decentralized control schemes that do not depend
on the coordinate system.

IV. LOCAL ACTION THEORY BASED ON BACK
DIFFUSION-BASED POTENTIAL

It is necessary to decide the coordinate system in the
network, because the drift term −c x q(x, t) of Eq. (9) depends
on x. Here, we compare the flow of original drift term with
the flow for the drift term based on the absolute value of
coordinate x. Figure 3 shows that the direction and the size of
the drift are invariable in terms of absolute coordinate values.



Fig. 3. Coordinate values and the direction of the drift

Therefore, we replace x, that appears to the drift term for
Eq. (9), by some function f(x, t), as follows:

Jq(x, t) = −c f(x, t) q(x, t)− cσ2 ∂

∂x
q(x, t). (10)

The temporal evolution of distribution q(x, t) that corresponds
to this is given by

∂

∂t
q(x, t) = c

µ
∂

∂x
f(x, t) + σ2 ∂2

∂x2

∂
q(x, t). (11)

The introduction of f(x, t) eliminates the need to set space
coordinates in the network.
As a more intuitive explanation, we consider the following

potential function Φ(x, t) instead of function f(x, t):

f(x, t) = −∂Φ(x, t)
∂x

. (12)

Choosing Φ(x, t) appropriately yields autonomous decentral-
ized control that does not depend on the coordinate system.
In general, in order to decide beforehand the potential

function Φ(x, 0) that satisfies some global condition, we must
know the macro-scale information related to the entire system,
not the micro-scale information related to system elements.
This renders problematic autonomous decentralized systems
that operate only with local information. To resolve this
conundrum, we consider how to decide the drift term from
distribution q(x, t). Because the potential function Φ(x, t)
should have the effect to maintain the distribution within the
range of the limited space, in opposition to the effect of
diffusion, Φ(x, t) is decided as the equation,

Φ(x, t + dt) = −
µ

q(x, t)− κ0
∂2q(x, t)

∂x2
dt

∂
, (13)

where κ0 > 0. This equation can be expressed as follows:
• We let the time progress of the diffusion phenomenon with
the diffusion coefficient κ0 be reversed (back diffusion).

• Next, we reverse the distribution (up and down), and regard
the completed distribution as the potential.

The temporal evolution of the distribution becomes a flat state
in the foward direction of time for general diffusion (Fig. 4).
For back diffusion, on the other hand, the temporal evolution
of the distribution goes against the direction of time and the
configuration of the distribution becomes sharp with time.
Inherent in back diffusion, the phenomenon of a decrease in
entropy does not happen in the natural world, but it can be

Fig. 4. back diffusion

realized easily in the framework of autonomy decentralized
control.
Due to the effect of the drift term, including the potential,

the peak of distribution q(x, t) is emphasized and the distri-
bution shape is sharpened. The effect of the diffusion term,
on the other hand, is to flatten the distribution. A structure of
finite size can be formed by balancing one effect against the
other.

V. AUTONOMOUS DECENTRALIZED CONTROL
CLUSTERING IN AD HOC NETWORKS

This paper applies the above autonomous decentralized
control technologies to realize clustering (of finite size con-
figuration) to ad hoc networks. To simplify the discussion, we
adopt a one-dimensional network model in which the space
coordinate x corresponds to node ID. Moreover, each node
has a numerical value, q(x, t), that indicates its fitness to be
the cluster head.
We assume that the total number

R
q(x, t) dx for numerical

value q(x, t) of each node x in the network is constant. Each
node interacts with the adjacent nodes and the numerical
value is exchanged. As a result, distribution q(x, t) changes
over time. Concrete interaction follows the local action rules
(10) described in the previous section, and q(x, t) follows the
temporal evolution Eq. (11). At this time, the peak in the shape
of distribution q(x, t) corresponds to a cluster head, and the
bottom corresponds to the boundary of the cluster.
We now explain the concrete process by which q(x, t)

changes and how a cluster structure is generated.
The peak of distribution q(x, t) is emphasized and the

cluster head candidate emerges, for the effect of the potential
function Φ(x, t) which is obtained by using the back-diffusion
of the current distribution q(x, t) for the drift term in Eq. (11).
On the other hand, the effect of the diffusion term of temporal
evolution Eq. (11) softens the peak of the distribution q(x, t).
A structure appears by balancing the effect of the drift term
against that of the diffusion term.
We explain the characteristics of the proposed method by

Fig. 5. Let us consider the initial condition in which there
are two or more cluster-head candidates on the left, and
there is one small-scale cluster-head candidate in the right. In
areas that are over-endowed with cluster-head candidates, the
candidates are integrated autonomously to form one cluster.
When there is no candidate in the surrounding oppositely, it
becomes a cluster head even if it is not a powerful cluster
head candidate. We can invent the structure that adjusts to
local circumstances by the autonomous decentralized control.



Fig. 5. Integrating and forming clusters according to local circumstances

The control information that each node sends is only q(x,t).
Each node sends the information to only adjacent nodes, and
flooding other than adjacent nodes is unnecessary. Therefore,
there are not a lot of amounts of the control information
forwarded.

VI. EVALUATION
A. Evaluation of clustering method according to local circum-
stances
First, we evaluate whether to generate a cluster while

dynamically changing each node role according to local cir-
cumstances. The network model used in the simulation is the
one-dimensional model (the number of nodes is 200). The
initial state of distribution q(x, t), which represents cluster
head fitness, is shown in the upper left of Fig. 6. The network
model has the feature of torus type and both sides in one-
dimensional model are connected (the right side of node 200 is
node 0). The initial state exhibits three cluster head candidates
on the left side, and one cluster head candidate on the right
side. The horizontal axis denotes node ID and the vertical axis
denotes the value of distribution q(x, t).
If two cluster head candidates close to each other, they

should be merged to form one cluster according to local
circumstances and parameter σ2. When there is no cluster-
head candidate in a neighborhood, a cluster head candidate
should become a cluster head even if it is not necessarily
prime candidate. The results of evaluating the cluster head
fitness distribution from this viewpoint are shown in the upper
right of Fig. 6 and in the lower of this figure. Parameter σ2

is set to values of 0.1, 0.2 or 0.4 in the graphs, and c = 1,
κ0 = 0.1. In this evaluation, the distribution is prone to form
smooth clusters by setting the operation interval of the drift
term more than the operation interval of the diffusion term.
We set the drift interval τdrift = 10 while the diffusion interval
τdiff is 1. The plots show the results after sufficient time has
past (t = 100). We can see from the results that when σ2

is small(large), the cluster head candidates in the left side are
not(are) integrated. Note that the cluster head on the right side
is present in all cases.

B. Evaluation of clustering method for the state without
structure
In Fig. 7, similarly, we show the impact of the cluster

structure in the condition where the initial fitness of each
cluster head is given at random. Distribution q(x, t), which
denotes cluster head fitness, is set to a uniform random decimal
number between [0, 1], the upper left of Fig. 7. The evaluation

Fig. 6. Evaluation results of clustering method according to local circum-
stances

Fig. 7. Evaluation results of clustering method for the state without structure

results of the cluster head fitness distribution are shown in the
upper right of and in the the lower of Fig. 7. Parameter σ2

is set to values of 0.1, 0.2 or 0.4 in the graphs, and c = 1,
κ0 = 0.1. The drift interval τdrift is 5 and the diffusion interval
τdiff is 1. From these results, we can see that if parameter σ2 is
small(large), many(few) small(large) clusters are created. This
is reasonable because increasing parameter σ2 strengthens
the diffusion effect which promotes cluster integration. The
proposed method forms clusters autonomously where their
number and size are determined by parameter σ2.

C. Evaluation of temporal evolution for the number of clusters
Next, we investigate the variation of the number of clusters

for parameter σ2 that denotes strength of the diffusion effect.
As for the network model, the initial fitness of each cluster is
assumed to be at random as well as the previous evaluation.
Parameter σ2 is set to values of 0.1, 0.2 or 0.4, and c = 1,
κ0 = 0.1 and the drift interval τ = 5. For calculating the
number of clusters N we add one to N when cluster head
fitness q(x, t) of each node is larger than those of adjacent
nodes (right and left nodes). We evaluate the number of
clusters N ten times by changing the random seed. In Fig.8,
the horizontal axes denote the simulation time and the vertical
axes denote the mean number of clusters Nmean for ten results.
The three lines in this figure show the results for the cases
where parameter σ2 = 0.1, 0.2, and 0.4. We can see in Fig.8
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Fig. 8. Temporal variation of the mean number of clusters for σ2

Fig. 9. Temporal variation of the mean number of clusters for τdrift

thatNmean falls sharply at the start (from time t = 0 to t = 10)
for every σ2, and the decrease rate of Nmean becomes small
with time. Finally, it settles down in an almost constant value
and becomes stable. In the case of σ2 = 0.4, larger clusters
are created and the number of clusters decreases, because the
larger σ2 is, the higher the diffusion effect is.
Next, we evaluate the mean number of clusters Nmean for

the drift interval. The small drift interval (the high frequency of
the drift operation) enlarges the effect of “the peak emphasis”
and “the sharpness of the distribution.” Three graphs in fig.9
show the results when σ2 = 0.1, 0.2, and 0.4. The lines in this
figure show the results for the cases where the drift interval
τdrift = 5, 10, 15, and 20.
In the case where σ2 = 0.1，Nmean is large when the drift

interval is small (τdrift = 5). When the drift interval is larger,
on the other hand, Nmean is small and it doesn’t make much
difference among three results (τdrift = 10, 15, and 20) in
the lower of this figure. Then, the drift interval τdrift doesn’t
influence much the mean number of clusters in the case where
σ2 = 0.2 and 0.4, and the values ofNmean are almost the same
regardless of τdrift. To create a lot of clusters with the small
cluster size, we have to set the parameter σ2 and τdrift to be
small. On the other hand, larger clusters are created by using
larger σ2.

VII. CONCLUSION
In this paper, we introduce an autonomous decentralized

control approach that uses renormalization transformation and

back-diffusion potential; it forms the basis of our new clus-
tering method for ad hoc networks. Though each node acts
autonomously based only on local information, the decision-
making of each node leads to meaningful cluster formation
appropriate for overall network conditions. Evaluations clari-
fied that the proposed method can realize a cluster structure
autonomously in response to local circumstances in ad hoc
networks. We can see that when there is no cluster-head
candidate in the neighborhood, the mobile node itself stands
as a candidate and becomes a cluster head, and on the other
hand, when there are two or more cluster-head candidates,
the node corresponding to metric is selected as cluster-head
among them.
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