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Abstract—We have proposed CoMPACT monitor that
achieves scalable measurement of one-way delay distribution
for each flow. CoMPACT monitor is technique that transforms
one-way delay data obtained by active measurement by using
passively monitored traffic data of the target flow. In a recent
study, it was reported that by using an inter-probe time
that has a Gamma distribution can improve the accuracy
of simple active measurement. The improvement is in terms
of the ensemble mean of stationary stochastic process. In
this paper, to improve accuracy of CoMPACT monitor, we
apply Gamma-probing as an active measurement of CoMPACT
monitor. The significant issue in this application is in the
difference between objects to measure; CoMPACT monitor
estimates not the ensemble mean but the time average of sample
path. We investigate the characteristics of CoMPACT monitor
and Gamma-probing, and verify the accuracy improvement of
CoMPACT monitor through simulations.

Keywords-CoMPACT monitor, change-of-measure, Gamma
distribution, QoS measurement.

I. INTRODUCTION

As the Internet has grown larger over the last several
years, it came to play an important role as infrastructure. Var-
ious applications provide new services including telephony
and live video, and the traffic they stream exhibits complex
characteristics. These various applications require the var-
ious quality of service (QoS) that differs from traditional
e-mail and web browsing. Then, since the new application
will be developed in the future, the diversification of QoS
requirements will progress even more.

In order to meet such varied requirements for network
control, we need a measurement technology to produce
detailed QoS information. Measuring the QoS for each of
multiple flows (e.g., users, applications, or organizations)
is important since these are used as key parameters in
service level agreements (SLAs) between an Internet service
provider (ISP) and users. One-way packet delay is one of
the most important QoS metrics. This paper focuses on the
measurement of one-way delay for each flow.

Conventional means of measuring QoS can be classified
into two types: passive and active measurements.

Passive measurement monitors the target user packet
directly, by capturing the packets, including the target infor-
mation. Passive measurement is used to measure the volume
of traffic, one-way delay, round-trip time (RTT), loss, etc.
and can get any desired information about the traffic since

it observes the actual traffic. Passive measurement can be
categorized into two-point monitoring with data-matching
processes (to measure one-way delay etc.) and one-point
monitoring (to measure volume of traffic etc.).

Passive measurement has the advantage of accuracy.
However if we perform passive measurement in large-scale
networks, the number of monitored packets is enormous and
network resources are wasted by gathering the monitored
data at a data center. Moreover, in order to measure delay,
it is necessary to determine the difference in arrival time of
a particular packet at different points in the network. This
requires searching for the same packet pairs monitored at the
different points in the monitored packet data. The passive
measurement lacks scalability due to this packet matching.

Active measurement monitors QoS by injecting probe
packets into a network path and monitoring them. Active
measurement can be used to measure one-way delay, RTT,
loss, etc. It cannot obtain the per-flow QoS, though it is easy
for the end user to carry out. Unfortunately, the QoS data
obtained by active measurement does not represent the QoS
for user packets, but only QoS for the probe packets.

By complementary use of the advantages of active and
passive measurements, the authors propose a new technique
of scalable measurement called change-of-measure-based
passive/active monitoring (CoMPACT monitor) to measure
per-flow QoS [1], [2], [3], [4].

The idea of CoMPACT monitor is as follows. The direct
measurement of QoS of the target flow by passive measure-
ment is difficult due to the scalability problem. So, we try
to obtain QoS of the target flow by using a transformation
of QoS data (obtained by active measurement). The trans-
formation can be determined by passively monitored traffic
data for the target flow. The problem of scalability does not
arise, because the volume of traffic can be measured by one-
point passive measurement without requiring data-matching
processes.

We have believed Poisson arrivals (intervals according to
exponential distribution) is appropriate to a policy of probe
packets arrivals since we can apply PASTA (Poisson Arrivals
See Time Averages) property to it.

However, recent work [5] indicates that many distributions
exist that are more accurate than an exponential distribution
if a non-intrusive context (ignoring the effect of probe pack-
ets) can be assumed. Moreover, we can find a distribution
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Figure 1. The relation between timing of arrivals and empirical QoS

that is suboptimal in accuracy by selecting an inter-probe
time according to the parameterized Gamma distribution.

This paper confirms that applying Gamma-probing to
CoMPACT monitor can improve the accuracy of measure-
ment of one-way delay distribution for individual flows.
The significant issue in this application is in the difference
between objects to measure. In [5], the process observed
by probe packets is assumed to be a stationary and er-
godic stochastic process. So, the accuracy improvement is
guaranteed only when we estimate the ensemble mean of
stationary stochastic process. However, CoMPCT monitor
estimates the time average of sample path. Therefore, we
should carefully investigate the characteristics of CoMPACT
monitor and Gamma-probing.

The rest of the paper is organized as follows. We describe
the summary of CoMPACT monitor in Section II. Next,
we briefly summarize the theory of Gamma-probing for
active measurement, shown in [5], in Section III. Section IV
discusses the difference of objects we want to estimate
between Gamma-probing [5] and CoMPACT monitor. To
confirm that CoMPACT monitor is able to be improved
in accuracy by Gamma-probing, we execute simulation in
Section V. We conclude the paper in Section VI.

II. SUMMARY OF COMPACT MONITOR

CoMPACT monitor estimates an empirical QoS for the
target flow by converting observed values of network per-
formance at timing of probe packet arrivals into a measure
of the target flow timing. Now, let v(t) denote the network
process under observation (e.g. the virtual one-way delay at
time t), and Xk denote a random variable which is observed
v(t) with a certain timing (e.g. the timing of user packet
arrivals). The probability for Xk to exceed c is

P(Xk > c) =
∫

1{x>c}dFk(x) = EFk
[1{x>c}]

where Fk(x) is the distribution function of Xk.
If we can directly monitor Xk, its distribution can be

estimated by
∑m

n=1 1{Xk(n)>c}/m, where Xk(n) (n =
1, 2, · · · ,m) denote the nth observed value.

Now, let us consider the situation that Xk cannot be
directly monitored. Let Y denote a random variable that
is observed v(t) at a different timing (e.g. timing of probe
packet arrivals) independent of Xk. Then we consider the
relationship between Xk and Y .

Characters of Xk and Y are different if their timing
is different, even if they observe a common process v(t)
(see Fig. 1). Xk and Y can be related by each distribution
functions Fk and G, and P(Xk > c) expressed by measure
of Xk can be transformed into measure of Y as follows.

P(Xk > c) =
∫

1{x>c}dFk(x)

=
∫

1{y>c}
dFk(y)
dG(y)

dG(y)

= EG

[
1{Y >c}

dFk(Y )
dG(Y )

]
Therefore, P(Xk > c) can be estimated by

1
m

m∑
n=1

1{Y (n)>c}
dFk(Y (n))
dG(Y (n))

, (1)

for sufficiently large m, where Y (n) (n = 1, 2, · · · ,m)
denote the nth observed value. Note that this estimator
does not need to monitor the timing of Xk, if we can get
dFk(Y (n))/dG(Y (n)). This means the QoS of a specific
flow (as decided by k) can be estimated by just one probe
packet train that arrives with a timing of Y .

In the following, we briefly summarizes the mathematical
formulation of CoMPACT Monitor [4]. We assume the
traffic in the target flow can be treated as a fluid. In other
words, we assume packets of the target flow are more
numerous than active probe packets.

Let a(t) and v(t), respectively, denote the traffic in the
target flow at time t and the virtual one-way delay on
the path that we want to measure. a(t) and v(t) are a
nonnegative deterministic processes assumed to be right-
continuous with left limits and bounded on t ≥ 0. We can
consider a(t) and v(t) are sample paths of corresponding
stochastic processes.

Considering to measure the empirical one-way delay
distribution π(c), the value we want to measure is the ratio
to all traffic of the target flow of traffic for which the delay
to exceeds c, which is given by

π(c) = lim
t→∞

∫ t

0
1{v(s)>c}a(s)ds∫ t

0
a(s)ds

. (2)

This can be estimated through m times monitoring by

Zm(c) =
1
m

m∑
n=1

1{v(Tn)>c}
a(Tn)∑m

l=1 a(Tl)/m
(3)

for sufficiently large m (see [4] for details), where Tn

(n = 1, 2, · · · ,m) denotes the nth sampling time, and each
time of sampling corresponds to a time of probe packet
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arrival. Active and one-point passive measurement are used
respectively to observe v(Tn) and a(Tn). Note that one-
point passive measurement can be conducted very easily
here, compared with two-point passive measurement for
measuring the one-way delay.

If we extract the quantity
∑m

n=1 1{v(Tn)>c}/m from (3),
this quantity is a simple active estimator that counts the
packets for the delay to exceeds c. However, (3) is weighted
by a(Tn)/(

∑m
l=1 a(Tl)/m), which is decided by the traffic

in the target flow when probe packets arrive. This means
that the one-way delay distribution (measured by active mea-
surement without bias) is corrected to the empirical one-way
delay distribution by the bias of the target flow (observed
by passive measurement). a(Tn)/(

∑m
l=1 a(Tl)/m) in (3)

corresponds to dFk(Y (n))/dG(Y (n)) in (1).

III. SUBOPTIMAL PROBE INTERVALS

Since the PASTA property is good for non-biased mea-
surement, Poisson arrivals have been widely used as policy
of probe packets arrivals for active measurement. However,
if arrival process of the probe packets is stationary and mix-
ing, under non-intrusive conditions, the following equation
holds and we can also ignore the effects of probe packets
under non-intrusive conditions.

lim
m→∞

1
m

m∑
n=1

f(Y (Tn)) = lim
t→∞

1
t

∫ t

0

f(Y (t))dt

= E[f(Y (0))] a.s., (4)

where f is an arbitrary positive function and the second
equality follows from the stationary and ergodicity of the
target process Y (t). [6] proved (4) and named this property
NIMASTA (Non-Intrusive Mixing Arrivals See Time Aver-
ages).

Mixing is the requirement to guarantee jointly ergodic-
ity between probe packet process and the target process.
For example, there are processes whose intervals obey the
Gamma distribution, the uniform distribution, etc [6]. Note
that periodic-probing, with determinate intervals is not a
mixing process, and does not satisfy (4).

The recent study [5] also reported that NIMASTA-based
probing is suitable for measurement. That provides an im-
provement in the accuracy of the measurement. We can
select a suboptimal probing process in terms of accuracy
under the specific assumption by using an inter-probe time
given by the parameterized Gamma distribution.

If we estimate the mean of Y (0) by using active mea-
surement, estimator p̂ is

p̂ =
1
m

m∑
n=1

Y (Tn). (5)

Then variance of p̂ is

Var[p̂] =
1

m2
Var

[
m∑

n=1

Y (Tn)

]

=
1

m2

m∑
n=1

Var[Y (Tn)] +
2

m2

∑
n �=l

Cov (Y (Tn), Y (Tl))

(6)

=
1
m

Var[Y (0)] +
2

m2

∑
n�=l

∫
R(τ)f|n−l|(τ)dτ (7)

where fk is probability density function (pdf) of Tk, R(τ) =
Cov (Y (t), Y (t − τ)) is the autocovariance function of the
target process Y (t) and the last equality follows from the
stationary of Y (t) and probe packet process.

If R(τ) is convex, the following can be proven by
using Jensen’s inequality. No other probing process with an
average interval of μ has a variance that is lower than that of
periodic-probing (see [5]). A lower variance of the estimator
is connected with accuracy. Therefore, periodic-probing is
the best policy if we focus only on variance.

On the other hand, periodic-probing does not satisfy the
assumptions of NIMASTA due to non-mixing, so periodic-
probing is not necessarily the best. This is because a phase-
lock phenomenon may occur and the estimator may converge
on a false value when the cycle of the target process
corresponds to the cycle of the probing process.

To tune the tradeoff between traditional PASTA-based
probing and periodic-probing, [5] proposes a suboptimal
policy that gives an inter-probe time that obeys the param-
eterized Gamma distribution. The pdf that is used as the
intervals between probe packets is given by

g(x) =
xβ−1

Γ(β)

(
β

μ

)β

e−xβ/μ (x > 0), (8)

where g(x) is the Gamma distribution whose shape and scale
parameters are β and μ/β, respectively. μ denotes the mean,
and β is the parameter. When β = 1, g(x) reduces to the
exponential distribution. When β → ∞, the policy reduces
to periodic-probing because g(x) converges on δ(x − μ).

If the autocovariance function is convex, it is proven that
variance of estimator p̂ sampled by intervals according to
(8) monotonically decreases with increase of β. This is
caused by decrease of the covariance part that is the second
term on the right-hand side of (7). We can achieve near-
optimal variance of periodic-probing, since (8) corresponds
to periodic-probing towards limit β → ∞.

The problem of incorrectness due to phase-lock phe-
nomenon can be avoided if we tune β to a limited value (this
gamma-probing satisfy the mixing assumption). We can get
a suboptimal probing if we give β an appropriate value.

IV. THE APPLICATION TO COMPACT MONITOR

This section discusses the application of Gamma-probing
to CoMPACT monitor. Comparing (5) with (3), we can con-
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Figure 2. Network model

sider that stochastic process Y (t) observed by CoMPACT
monitor is

Y (t) = 1{V (t)>c}
A(t)

E[A(t)]
, (9)

where V (t) and A(t) are stochastic processes corresponding
to sample path v(t) and a(t), respectively. If it is confirmed
that the autocovariance function R(τ) of stochastic process
Y (t) is convex, we can guarantee accuracy improvement due
to Gamma-probing by applying the theory in Section III.

The convexity of the autocovariance function has be
verified in cases of simple virtual delay process and loss
process by data of large-scale passive measurement and
simulations [5]. However, Y (t) observed by CoMPACT
monitor is weighted by traffic A(t) of a specific flow, so the
property of Y (t) obviously differs from delay/loss processes
that are influenced by all flows on the network. Therefore,
we must confirm the convexity of R(τ) in the CoMPACT
monitor case. In Section V, we will show that the assumption
(R(τ) is convex) is appropriate to CoMPACT monitor.

As described in Section II, we consider v(t) and a(t)
are sample paths of corresponding stochastic processes
(without stationary and ergodicity) since CoMAPCT monitor
estimates the time average of sample path given by (2).
However, as explained in Section III, the target process
Y (t) is stationary stochastic process [5], and the decrease
of variance of p̂ is guaranteed for the estimation of the
ensemble mean of Y (t). The variance of p̂ depends on
both stochastic variations of Y (t) and Tn. On the other
hand, CoMPACT monitor observe sample path y(t) rather
than stochastic process Y (t), because CoMPACT monitor
estimates one-way delay that is experienced by user flows.

Therefore, it is desired in CoMPACT monitor that vari-
ance of estimator p̂ which depends only on sampling time
Tn on certain sample path rather than Y (t) decreases. In
other words, variance we want to decrease is given by

Var[p̂] =
1

m2

m∑
n=1

Var[y(Tn)] +
2

m2

∑
n �=l

Cov(y(Tn), y(Tl)).

(10)

Note that (10) corresponds to (6). If the autocovariance func-
tion of Y (t) is convex, we can consider that the covariance
part that is the second term on the right-hand side of (10)

tends to decrease with increase of β. Then variance of inter-
probe time given by (8) is μ2/β, and decreases with increase
of β. Hence, we can also expect that the variance part that
is the first term on the right-hand side of (10) decreases
with increase of β since each observed value y(Tn) is not
varied. In Section V, we present the result of simulation
that variance of estimator which depends only on Tn also
decreases with increase of β by using Gamma-probing.

V. THE EFFECTIVENESS OF GAMMA-PROBING

A. Simulation model

We investigated the effectiveness of Gamma-probing in
the framework of CoMPACT monitor. The network model
we used in the simulation is shown in Fig. 2.

There are 20 pairs of source and destination end hosts.
Each source end host transfers packets by UDP to the
corresponding destination end host. User flows are given as
ON/OFF processes and categorized into the four types listed
in TABLE I, with there are five flows in each type.

Probe packet trains are categorized into the five types
listed in TABLE II. Note that Exp and periodic in TABLE II
are special cases of Gamma distribution, and parameters of
Exp and periodic are parameters of the Gamma distribution
corresponding to each probing. 300 trains of each type are
streamed on the two routes shown in Fig. 2, so the total
number of probe packet trains in the network is 3000. To
analyze the variance of the estimator, we streamed a large
number of probe packet trains. Of course we can estimate
the empirical delay from only one probe packet train.

User flow packets and probe packets are 1500 bytes
and 64 bytes, respectively. Link capacities are identical at
64 Mbps. Delay occurs mainly in the link between the core
routers, since it is a bottleneck, but no loss occures, because
there is sufficient buffering.

Our simulation model is simple. However, we have con-
firmed that CoMPACT monitor (without Gamma-probing)
is effective in an actual environment. Therefore, this model
is enough to confirm the combination between CoMPACT
monitor and Gamma-probing.

We ran the simulation for 500 s. The non-intrusive re-
quirement was satisfied, since the ratio of the probe packet
traffic (bytes) to all traffic (bytes) is about 0.00197%.

B. The convexity of the autocovariance function

In this subsection, we will discuss whether the autoco-
variance function of the target process Y (t) is convex. Note
that target process is treated as not sample path y(t) but
stochastic process Y (t).

The (standardized) autocovariance function for c = 0.1 for
flow #1 with 95% confidence intervals by 10 experiments is
depicted in Fig. 4. To represent at each flow type, we plotted
flows #6, #11 and #16. This permitted the conclusion that
none of these results contradicted the assumption that the
autocovariance function is convex.
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Table I
TYPE OF USER FLOWS

Flow
type

Flow
ID

Mean ON/OFF
period

Distribution of
ON/OFF length

Shape
parameter

Rate at
ON period

type 1 #1-5 10s/5s Exp - 6 Mbps
type 2 #6-10 5s/10s Exp - 6 Mbps
type 3 #11-15 5s/10s Parete 1.5 9 Mbps
type 4 #16-20 1s/19s Parete 1.5 9 Mbps

Table II
TYPE OF PROBING

Distribution of intervals Parameter Mean probe interval
Exp (β = 1) 0.5 s

Gamma β = 5 0.5 s
Gamma β = 25 0.5 s
Gamma β = 125 0.5 s
Periodic (β → ∞) 0.5 s
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Figure 3. The estimation of complementary CDF for (Left) β = 1, (Middle) β = 25 and (Right) β → ∞ (flow #1)

C. One-way delay distribution

In this subsection, we show that CoMPACT monitor can
estimate the empirical one-way delay when using Gamma-
probing. The estimation of the complementary cumulative
distribution function (CDF) of the one-way delay experi-
enced by user flows (as given by (2)) will be shown below.
Note that v(t) and a(t) are both sample paths in (2).

To estimate the complementary CDF of the one-way delay
experienced by flow #1, we use probe packet trains with
parameter β = 1, 25 and β → ∞ respectively. Each result
is shown in Fig. 3. To compare the empirical delay with the
estimate from CoMPACT monitor, we include the estimate
from active measurement in the plot.

In Fig. 3, we can see that the CoMPACT monitor gives
good estimates of the true value. We cannot judge the
superiority or inferiority of any type of probe packet trains.
To represent each flow type, we have plotted for flows #6,
#11 and #16, getting results similar to Fig. 3.

D. Accuracy Improvement of CoMPACT monitor

In this subsection, we verify the relationship between the
parameter β and the variance of estimator. Note that we
consider the variance of p̂ which depends only on probe
packets timing (namely, sampling time Tn).

We plot the standard deviation of each point of the
complementary CDF in Fig. 5. Error bars indicate the 95%
confidence interval when the standard deviation calculated
from 30 probe packet trains is considered to be a single data
point.

The standard deviation clearly decreases as β increases
from β = 1 to β = 125. In periodic-probing corresponding
to β → ∞, the standard deviation is often larger than that
for β = 125 and 25. This reversal is a sign of the phase-lock.

Hence, it is confirmed that we can obtain adequate accu-
racy on variance which depends only on sampling time Tn

with a suboptimal probing process if we tune the parameter
of Gamma distribution that we use as the inter-probe time.

E. The upper bounds of variance

Adding to the simulation results in previous subsection,
we prove that periodic-probing is surely more superior than
the traditional PASTA-based probing.

Let us idealize the traffic process a(t) to ON/OFF process.
We assume a(t) is the binary process which takes a value
α if the target flow streams, and 0 otherwise. Then p̂ is
expressed by

p̂ =
m∑

n=1

1{v(Tn)>c}
a(Tn)∑m
l=1 a(Tl)

=
∑m

n=1 1{v(Tn)>c∧a(Tn)>0}∑m
l=1 1{a(Tl)>0}

. (11)

Since UDP does not control the volume of traffic, the
assumption is appropriate to the UDP flow.

Now, we consider the range of (11). 1{v(t)>c∧a(t)>0} and
1{a(t)>0} are the binary processes, and we can divide them
into the periods of 0 or 1. If they are observed by periodic-
probing, the difference between the maximum and minimum
observation frequency is 1 at most in one period (see Fig. 6).

The maximum range Δ of (11) is given by

Δ =
k2

mq − k1
, (12)

where k1 denote the number of periods of 1{a(t)>0} = 1,
q denote the time average of 1{a(t)>0} and k2 denote the
number of periods of 1{v(t)>c∧a(t)>0} = 1.

The distribution that has the maximum variance with the
range Δ has pdf h(x) = δ(x−a)/2+δ(x−a−Δ)/2, where
δ(·) is Dirac δ function and a is an arbitrary constant. Hence,
the upper bounds of estimator variance is as follows.

Var[p̂] ≤
(

Δ
2

)2

=
k2

2

4(mq − k1)2
. (13)
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Figure 7. The upper bounds of periodic-probing for (Left) flow #1 and (Right) flow #16

Calculating k1, k2 and q in above simulation, we plot
the upper bounds of periodic-probing in Fig. 7. Note that
standard deviations of PASTA-based probing and periodic-
probing (the same data as we plot in Fig. 5) are displayed.

In results of flow #1, #6 and #11, we can confirm that the
upper bounds of periodic-probing are smaller than standard
deviation of PASTA-based probing in the domain of interest
(the domain with large delay). Therefore, it is guaranteed
that periodic-probing is surely more superior than PASTA-
based probing.

In result of flow #16, the upper bounds of periodic-
probing are larger than standard deviation of PASTA-based
probing because the combination of flow type 4 (e.g.
flow #16) and (13) is bad. The flows of type 4 has short
ON periods and long OFF periods as shown in TABLE I.
So the maximum range given by (12) becomes large because
the denominator becomes small. Therefore, the appropriate
upper bounds cannot be given by (13).

VI. CONCLUSION

In a non-intrusive context where the effect of probe
packets can be ignored, it was confirmed that the accuracy
of estimating the complementary CDF of one-way delay can
be improved by using Gamma-probing as part of applying
CoMPACT monitor estimates. This means that Gamma-
probing proposed in [5] is able to apply to CoMPACT
monitor that estimates the time average of sample path.

Then, we were able to confirm that the autocovariance
function of process observed by CoMACT monitor is con-
vex. The convexity contributes to the accuracy improvement
when we estimate not only the ensemble mean of stochastic
process but also the time average of sample path.
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